Crosswind‐based optimization of multiple runway orientations

Crosswind‐based optimization of multiple runway orientations Summary The runway orientation must satisfy the operational requirements of aircraft for landing and takeoff. Actually, the runway orientation is the result of compromises between the airport usability (wind coverage) and additional factors, such as available land, existing obstructions, topographic difficulties, flight path interference among runways and airports, noise pollution, and other environmental impacts. Therefore, the solution of a combination of acceptable runway orientations, which avoids excessive crosswinds at least 95% of the time, as well as the optimal orientation solution, is essential to conduct those compromises in the runway orientation analysis. The objective of this paper is to develop a computer model, named the optimization of multiple runway orientations model, which is capable of simultaneously providing a combination of acceptable runway orientations, changing the allowable crosswind limit flexibly, and determining the optimal orientations of multiple runway configurations. Instead of visual estimation or geometric computation, this paper presents an analytical method for wind coverage analysis. The model is mainly running in spreadsheet and Visual Basic for Applications (VBA). The numerical example and comparison show that the optimization of multiple runway orientations model is competitively accurate and convenient in comparison with previous ones. This paper presents an up‐to‐date model for the optimization of multiple runway orientations. By combining it with the geographic information system obstructions model, it can become an essential element of a future model for airport development cost minimization that combines airfield land use, earthwork volume, and cost estimation modules. Copyright © 2013 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Advanced Transportation Wiley

Crosswind‐based optimization of multiple runway orientations

Loading next page...
 
/lp/wiley/crosswind-based-optimization-of-multiple-runway-orientations-lM9tuo80W4
Publisher
Wiley
Copyright
Copyright © 2015 John Wiley & Sons, Ltd.
ISSN
0197-6729
eISSN
2042-3195
D.O.I.
10.1002/atr.1247
Publisher site
See Article on Publisher Site

Abstract

Summary The runway orientation must satisfy the operational requirements of aircraft for landing and takeoff. Actually, the runway orientation is the result of compromises between the airport usability (wind coverage) and additional factors, such as available land, existing obstructions, topographic difficulties, flight path interference among runways and airports, noise pollution, and other environmental impacts. Therefore, the solution of a combination of acceptable runway orientations, which avoids excessive crosswinds at least 95% of the time, as well as the optimal orientation solution, is essential to conduct those compromises in the runway orientation analysis. The objective of this paper is to develop a computer model, named the optimization of multiple runway orientations model, which is capable of simultaneously providing a combination of acceptable runway orientations, changing the allowable crosswind limit flexibly, and determining the optimal orientations of multiple runway configurations. Instead of visual estimation or geometric computation, this paper presents an analytical method for wind coverage analysis. The model is mainly running in spreadsheet and Visual Basic for Applications (VBA). The numerical example and comparison show that the optimization of multiple runway orientations model is competitively accurate and convenient in comparison with previous ones. This paper presents an up‐to‐date model for the optimization of multiple runway orientations. By combining it with the geographic information system obstructions model, it can become an essential element of a future model for airport development cost minimization that combines airfield land use, earthwork volume, and cost estimation modules. Copyright © 2013 John Wiley & Sons, Ltd.

Journal

Journal of Advanced TransportationWiley

Published: Jan 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off