Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous catalytic applications in the synthesis of propargylamines in aqueous medium

Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous... Heterogeneous magnetic nanocatalyst, Fe3O4@SiO2–Ligand–Cu (II) MNPs, reveals high catalytic performance within the synthesis of propargylamines using the multicomponent coupling reaction of aldehydes, phenylacetylene and secondary amines in water as a solvent. The substantial feature of this organic–inorganic hybrid magnetic nanocatalyst is the capability of straightforward separation of the reaction mixture by an external magnet which was retrieved ten times without significant loss of catalytic activity. This methodology has other advantages such as subordination to the principles of green chemistry and avoiding the use of expensive and harmful organic solvents. To study the stability and actual structure of birhodanine derivative–copper (II) complex, DFT calculations were also performed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous catalytic applications in the synthesis of propargylamines in aqueous medium

Loading next page...
 
/lp/wiley/copper-birhodanine-complex-immobilized-on-fe3o4-nanoparticles-dft-DPbTQy976l
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4120
Publisher site
See Article on Publisher Site

Abstract

Heterogeneous magnetic nanocatalyst, Fe3O4@SiO2–Ligand–Cu (II) MNPs, reveals high catalytic performance within the synthesis of propargylamines using the multicomponent coupling reaction of aldehydes, phenylacetylene and secondary amines in water as a solvent. The substantial feature of this organic–inorganic hybrid magnetic nanocatalyst is the capability of straightforward separation of the reaction mixture by an external magnet which was retrieved ten times without significant loss of catalytic activity. This methodology has other advantages such as subordination to the principles of green chemistry and avoiding the use of expensive and harmful organic solvents. To study the stability and actual structure of birhodanine derivative–copper (II) complex, DFT calculations were also performed.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off