Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins

Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity:... Halophyte, like Salicornia europaea, could make full use of marginal saline land for carbon fixation. How the photosynthesis of S. europaea is regulated under high salinity implicates a significant aspect to exploit this pioneer plant in future. Measurement of photosynthesis parameters demonstrated the reduction of photosynthesis for the 0 and 800 mM NaCl treated plants are more likely due to non‐stomatal limitation, which might be caused by changes in the enzymes associated with photosynthesis. Different salinity induced ultrastructure changes other than photosynthetic apparatus damage, suggesting the photosynthesis of S. europaea might be affected via biochemical regulation. Comparative proteomics analysis of chloroplast proteins by 2‐D gel electrophoresis reproducibly detected 90 differentially expressed proteins, among which 66 proteins were identified by nanoLC MS/MS. Further study of thylakoid membrane proteins by Blue‐Native PAGE proved the increase in abundance of light reaction proteins under salinity. Analysis of gene expression patterns of 12 selected proteins provides evidence for the correlations between transcription and proteomics data. Based on our results, a putative model of photosynthesis regulatory network figured out proper coordination of carbon fixation and nitrogen metabolism in chloroplast of S. europaea under salinity, which provided subcellular level insight into salt tolerance mechanism in S. europaea. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proteomics Wiley

Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins

Loading next page...
 
/lp/wiley/coordination-of-carbon-fixation-and-nitrogen-metabolism-in-salicornia-FX6OQYfJHM
Publisher
Wiley
Copyright
Copyright © 2011 Wiley Subscription Services
ISSN
1615-9853
eISSN
1615-9861
D.O.I.
10.1002/pmic.201100054
Publisher site
See Article on Publisher Site

Abstract

Halophyte, like Salicornia europaea, could make full use of marginal saline land for carbon fixation. How the photosynthesis of S. europaea is regulated under high salinity implicates a significant aspect to exploit this pioneer plant in future. Measurement of photosynthesis parameters demonstrated the reduction of photosynthesis for the 0 and 800 mM NaCl treated plants are more likely due to non‐stomatal limitation, which might be caused by changes in the enzymes associated with photosynthesis. Different salinity induced ultrastructure changes other than photosynthetic apparatus damage, suggesting the photosynthesis of S. europaea might be affected via biochemical regulation. Comparative proteomics analysis of chloroplast proteins by 2‐D gel electrophoresis reproducibly detected 90 differentially expressed proteins, among which 66 proteins were identified by nanoLC MS/MS. Further study of thylakoid membrane proteins by Blue‐Native PAGE proved the increase in abundance of light reaction proteins under salinity. Analysis of gene expression patterns of 12 selected proteins provides evidence for the correlations between transcription and proteomics data. Based on our results, a putative model of photosynthesis regulatory network figured out proper coordination of carbon fixation and nitrogen metabolism in chloroplast of S. europaea under salinity, which provided subcellular level insight into salt tolerance mechanism in S. europaea.

Journal

ProteomicsWiley

Published: Jan 1, 2011

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off