Coordination modes of multidentate azodye ligand derived from 4,4′‐methylenedianiline towards some transition metal ions: Synthesis, spectral characterization, thermal investigation and biological activity

Coordination modes of multidentate azodye ligand derived from 4,4′‐methylenedianiline towards... Nine new azodye metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cr(III), Fe(III), Ru(III), Hf(IV) and Zr(IV) ions have been prepared via the reaction of 5,5′‐((1E,1′E)‐(methylenebis(1,4‐phenylene))bis(diazene‐2,1‐diyl))bis(6‐hydroxy‐2‐thioxo‐2,3‐dihydropyrimidin‐4(5H)‐one) (H4L) with the corresponding metal salts affording sandwich (1 L:1 M), mononuclear (2 L:1 M), binuclear (1 L,2 M) and tetranuclear (1 L,4 M) complexes. Elemental analyses, spectral methods, magnetic moment measurements and thermal studies were utilized to confirm the mode of bonding and geometrical structure for the ligand and its metal complexes. Infrared spectral data show that the H4L ligand chelates with some metal ions in keto–enol–thione or keto–thione manner. It behaves in a neutral/dibasic tetradentate fashion in sandwich and binuclear complexes. Also, it acts as a neutral bidentate moiety in the Cr(III) complex. The spectra reveal that azo group participates in chelation in all complexes. Octahedral geometry was suggested for all chelates but the Cu(II) complex with square planar geometry. The thermal stability and decomposition of the compounds were studied, the data showing that the thermal decomposition ended with metal or metal oxide mixed with carbon as final product. The electron spin resonance spectrum of the Cu(II) complex demonstrates that the free electron is located in the ( dx2−y2) orbital. Measurements of biological activity against human cell lines Hep‐G2 and MCF‐7 reveal that the Cu(II) complex has a higher cytotoxicity in comparison to the free ligand and other metal complexes, with IC50 values of 6.10 and 5.2 μg ml−1, respectively, while the ligand has anti‐tumour activity relative to some of the investigated metal complexes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Coordination modes of multidentate azodye ligand derived from 4,4′‐methylenedianiline towards some transition metal ions: Synthesis, spectral characterization, thermal investigation and biological activity

Loading next page...
 
/lp/wiley/coordination-modes-of-multidentate-azodye-ligand-derived-from-4-4-GW05bqv3OJ
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4191
Publisher site
See Article on Publisher Site

Abstract

Nine new azodye metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cr(III), Fe(III), Ru(III), Hf(IV) and Zr(IV) ions have been prepared via the reaction of 5,5′‐((1E,1′E)‐(methylenebis(1,4‐phenylene))bis(diazene‐2,1‐diyl))bis(6‐hydroxy‐2‐thioxo‐2,3‐dihydropyrimidin‐4(5H)‐one) (H4L) with the corresponding metal salts affording sandwich (1 L:1 M), mononuclear (2 L:1 M), binuclear (1 L,2 M) and tetranuclear (1 L,4 M) complexes. Elemental analyses, spectral methods, magnetic moment measurements and thermal studies were utilized to confirm the mode of bonding and geometrical structure for the ligand and its metal complexes. Infrared spectral data show that the H4L ligand chelates with some metal ions in keto–enol–thione or keto–thione manner. It behaves in a neutral/dibasic tetradentate fashion in sandwich and binuclear complexes. Also, it acts as a neutral bidentate moiety in the Cr(III) complex. The spectra reveal that azo group participates in chelation in all complexes. Octahedral geometry was suggested for all chelates but the Cu(II) complex with square planar geometry. The thermal stability and decomposition of the compounds were studied, the data showing that the thermal decomposition ended with metal or metal oxide mixed with carbon as final product. The electron spin resonance spectrum of the Cu(II) complex demonstrates that the free electron is located in the ( dx2−y2) orbital. Measurements of biological activity against human cell lines Hep‐G2 and MCF‐7 reveal that the Cu(II) complex has a higher cytotoxicity in comparison to the free ligand and other metal complexes, with IC50 values of 6.10 and 5.2 μg ml−1, respectively, while the ligand has anti‐tumour activity relative to some of the investigated metal complexes.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off