Convergent evolution of floral shape tied to pollinator shifts in Iochrominae (Solanaceae)*

Convergent evolution of floral shape tied to pollinator shifts in Iochrominae (Solanaceae)* Flower form is one of many floral features thought to be shaped by pollinator‐mediated selection. Although the drivers of variation in flower shape have often been examined in microevolutionary studies, relatively few have tested the relationship between shape evolution and shifts in pollination system across clades. In the present study, we use morphometric approaches to quantify shape variation across the Andean clade Iochrominae and estimate the relationship between changes in shape and shifts in pollination system using phylogenetic comparative methods. We infer multiple shifts from an ancestral state of narrow, tubular flowers toward open, bowl‐shaped, or campanulate flowers as well as one reversal to the tubular form. These transitions in flower shape are significantly correlated with changes in pollination system. Specifically, tubular forms tend to be hummingbird‐pollinated and the open forms tend to be insect‐pollinated, a pattern consistent with experimental work as well as classical floral syndromes. Nonetheless, our study provides one of the few empirical demonstrations of the relationship between flower shape and pollination system at a macroevolutionary scale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolution Wiley

Convergent evolution of floral shape tied to pollinator shifts in Iochrominae (Solanaceae)*

Loading next page...
 
/lp/wiley/convergent-evolution-of-floral-shape-tied-to-pollinator-shifts-in-UMB31kDeey
Publisher
Wiley
Copyright
Copyright © 2018, Society for the Study of Evolution
ISSN
0014-3820
eISSN
1558-5646
D.O.I.
10.1111/evo.13416
Publisher site
See Article on Publisher Site

Abstract

Flower form is one of many floral features thought to be shaped by pollinator‐mediated selection. Although the drivers of variation in flower shape have often been examined in microevolutionary studies, relatively few have tested the relationship between shape evolution and shifts in pollination system across clades. In the present study, we use morphometric approaches to quantify shape variation across the Andean clade Iochrominae and estimate the relationship between changes in shape and shifts in pollination system using phylogenetic comparative methods. We infer multiple shifts from an ancestral state of narrow, tubular flowers toward open, bowl‐shaped, or campanulate flowers as well as one reversal to the tubular form. These transitions in flower shape are significantly correlated with changes in pollination system. Specifically, tubular forms tend to be hummingbird‐pollinated and the open forms tend to be insect‐pollinated, a pattern consistent with experimental work as well as classical floral syndromes. Nonetheless, our study provides one of the few empirical demonstrations of the relationship between flower shape and pollination system at a macroevolutionary scale.

Journal

EvolutionWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off