Controlling the Structures of Lanthanide Complexes in Self‐Assemblies with Tripodal Ligands

Controlling the Structures of Lanthanide Complexes in Self‐Assemblies with Tripodal Ligands The complexity of self‐assembled supramolecular systems is continuously evolving in the direction of large multicomponent polynuclear architectures. The self‐assembly of such systems requires the preparation of sophisticated organic receptors with “programmed” multidentate sites for binding metal ions. In this review we focus on the concept of tripodal receptors specifically designed for complexing lanthanide cations. A large palette of polytopic podands is described, and the structures of their anchoring and binding moieties are discussed together with their impact on the self‐assembly with LnIII. The crystal or calculated structures of mononuclear and polynuclear complexes are shown to illustrate typical structural features in relation to their properties. Moreover, thermodynamic speciation with several ligands is analysed along the lanthanide series in order to ascertain the effects of the ionic size. Understanding and controlling the different factors discussed here should help in rational designing of more complex architectures with LnIII. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Inorganic Chemistry Wiley

Controlling the Structures of Lanthanide Complexes in Self‐Assemblies with Tripodal Ligands

Loading next page...
 
/lp/wiley/controlling-the-structures-of-lanthanide-complexes-in-self-assemblies-Daj8lZfZEq
Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1434-1948
eISSN
1099-0682
D.O.I.
10.1002/ejic.201701075
Publisher site
See Article on Publisher Site

Abstract

The complexity of self‐assembled supramolecular systems is continuously evolving in the direction of large multicomponent polynuclear architectures. The self‐assembly of such systems requires the preparation of sophisticated organic receptors with “programmed” multidentate sites for binding metal ions. In this review we focus on the concept of tripodal receptors specifically designed for complexing lanthanide cations. A large palette of polytopic podands is described, and the structures of their anchoring and binding moieties are discussed together with their impact on the self‐assembly with LnIII. The crystal or calculated structures of mononuclear and polynuclear complexes are shown to illustrate typical structural features in relation to their properties. Moreover, thermodynamic speciation with several ligands is analysed along the lanthanide series in order to ascertain the effects of the ionic size. Understanding and controlling the different factors discussed here should help in rational designing of more complex architectures with LnIII.

Journal

European Journal of Inorganic ChemistryWiley

Published: Jan 14, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off