Construction of Choquet integrals through unimodal weighting vectors

Construction of Choquet integrals through unimodal weighting vectors Semiuninorm‐based ordered weighted averaging (SUOWA) operators are a specific case of Choquet integrals that allow us to generalize simultaneously weighted means and ordered weighting averaging (OWA) operators. Although SUOWA operators possess some very interesting properties, their main weakness is that, sometimes, the game used in their construction is not monotonic and it is necessary to calculate its monotonic cover. In this paper, we introduce a new family of weighting vectors, called unimodal weighting vectors, which embrace some of the most outstanding weighting vectors used in the framework of OWA operators, and we show that when using these weighting vectors and a specific semiuninorm we directly get normalized capacities. Moreover, we also show that these operators satisfy some properties which are very useful in practice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Systems Wiley

Construction of Choquet integrals through unimodal weighting vectors

Loading next page...
 
/lp/wiley/construction-of-choquet-integrals-through-unimodal-weighting-vectors-yWCmHuLfIG
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Wiley Periodicals, Inc.
ISSN
0884-8173
eISSN
1098-111X
D.O.I.
10.1002/int.21962
Publisher site
See Article on Publisher Site

Abstract

Semiuninorm‐based ordered weighted averaging (SUOWA) operators are a specific case of Choquet integrals that allow us to generalize simultaneously weighted means and ordered weighting averaging (OWA) operators. Although SUOWA operators possess some very interesting properties, their main weakness is that, sometimes, the game used in their construction is not monotonic and it is necessary to calculate its monotonic cover. In this paper, we introduce a new family of weighting vectors, called unimodal weighting vectors, which embrace some of the most outstanding weighting vectors used in the framework of OWA operators, and we show that when using these weighting vectors and a specific semiuninorm we directly get normalized capacities. Moreover, we also show that these operators satisfy some properties which are very useful in practice.

Journal

International Journal of Intelligent SystemsWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off