Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Construction and application of a zebrafish array comparative genomic hybridization platform

Construction and application of a zebrafish array comparative genomic hybridization platform The zebrafish is emerging as a prominent model system for studying the genetics of human development and disease. Genetic alterations that underlie each mutant model can exist in the form of single base changes, balanced chromosomal rearrangements, or genetic imbalances. To detect genetic imbalances in an unbiased genome‐wide fashion, array comparative genomic hybridization (CGH) can be used. We have developed a 5‐Mb resolution array CGH platform specifically for the zebrafish. This platform contains 286 bacterial artificial chromosome (BAC) clones, enriched for orthologous sequences of human oncogenes and tumor suppressor genes. Each BAC clone has been end‐sequenced and cytogenetically assigned to a specific location within the zebrafish genome, allowing for ease of integration of array CGH data with the current version of the genome assembly. This platform has been applied to three zebrafish cancer models. Significant genomic imbalances were detected in each model, identifying different regions that may potentially play a role in tumorigenesis. Hence, this platform should be a useful resource for genetic dissection of additional zebrafish developmental and disease models as well as a benchmark for future array CGH platform development. © 2008 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genes, Chromosomes and Cancer Wiley

Loading next page...
 
/lp/wiley/construction-and-application-of-a-zebrafish-array-comparative-genomic-l0R8DEmGWq

References (52)

Publisher
Wiley
Copyright
Copyright © 2009 Wiley‐Liss, Inc., A Wiley Company
ISSN
1045-2257
eISSN
1098-2264
DOI
10.1002/gcc.20623
pmid
18973135
Publisher site
See Article on Publisher Site

Abstract

The zebrafish is emerging as a prominent model system for studying the genetics of human development and disease. Genetic alterations that underlie each mutant model can exist in the form of single base changes, balanced chromosomal rearrangements, or genetic imbalances. To detect genetic imbalances in an unbiased genome‐wide fashion, array comparative genomic hybridization (CGH) can be used. We have developed a 5‐Mb resolution array CGH platform specifically for the zebrafish. This platform contains 286 bacterial artificial chromosome (BAC) clones, enriched for orthologous sequences of human oncogenes and tumor suppressor genes. Each BAC clone has been end‐sequenced and cytogenetically assigned to a specific location within the zebrafish genome, allowing for ease of integration of array CGH data with the current version of the genome assembly. This platform has been applied to three zebrafish cancer models. Significant genomic imbalances were detected in each model, identifying different regions that may potentially play a role in tumorigenesis. Hence, this platform should be a useful resource for genetic dissection of additional zebrafish developmental and disease models as well as a benchmark for future array CGH platform development. © 2008 Wiley‐Liss, Inc.

Journal

Genes, Chromosomes and CancerWiley

Published: Feb 1, 2009

There are no references for this article.