Consistency of a hybrid block bootstrap for distribution and variance estimation for sample quantiles of weakly dependent sequences

Consistency of a hybrid block bootstrap for distribution and variance estimation for sample... Consistency and optimality of block bootstrap schemes for distribution and variance estimation of smooth functionals of dependent data have been thoroughly investigated by Hall, Horowitz & Jing (), among others. However, for nonsmooth functionals, such as quantiles, much less is known. Existing results, due to Sun & Lahiri (), regarding strong consistency for distribution and variance estimation via the moving block bootstrap (MBB) require that b→∞, where b=⌊n/ℓ⌋ is the number of resampled blocks to be pasted together to form the bootstrap data series, n is the available sample size, and ℓ is the block length. Here we show that, in fact, weak consistency holds for any b such that 1≤b=O(n/ℓ). In other words we show that a hybrid between the subsampling bootstrap (b=1) and MBB is consistent. Empirical results illustrate the performance of hybrid block bootstrap estimators for varying numbers of blocks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australian & New Zealand Journal of Statistics Wiley

Consistency of a hybrid block bootstrap for distribution and variance estimation for sample quantiles of weakly dependent sequences

Loading next page...
 
/lp/wiley/consistency-of-a-hybrid-block-bootstrap-for-distribution-and-variance-hdMH8fAoCE
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 Australian Statistical Publishing Association Inc.
ISSN
1369-1473
eISSN
1467-842X
D.O.I.
10.1111/anzs.12206
Publisher site
See Article on Publisher Site

Abstract

Consistency and optimality of block bootstrap schemes for distribution and variance estimation of smooth functionals of dependent data have been thoroughly investigated by Hall, Horowitz & Jing (), among others. However, for nonsmooth functionals, such as quantiles, much less is known. Existing results, due to Sun & Lahiri (), regarding strong consistency for distribution and variance estimation via the moving block bootstrap (MBB) require that b→∞, where b=⌊n/ℓ⌋ is the number of resampled blocks to be pasted together to form the bootstrap data series, n is the available sample size, and ℓ is the block length. Here we show that, in fact, weak consistency holds for any b such that 1≤b=O(n/ℓ). In other words we show that a hybrid between the subsampling bootstrap (b=1) and MBB is consistent. Empirical results illustrate the performance of hybrid block bootstrap estimators for varying numbers of blocks.

Journal

Australian & New Zealand Journal of StatisticsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off