Conservation Genetics in the Management of Desert Fishes

Conservation Genetics in the Management of Desert Fishes Abstract: The status and security of fishes in North American deserts have steadily declined in this century due to man's activities in this naturally fragile region. We address genetic aspects of the population structure of desert fishes as applicable to conservation and recovery programs by developing two zoogeographic models of isolation and gene flow. In the Death Valley model populations are isolated, with no chance of natural gene flow among them. Genetic diversity within populations tends to be low, but genetic divergence among populations within a species is high. In the Stream Hierarchy model, a complicated hierarchical genetic structure exists and is a function of geographic proximity and connectivity of habitats. Within‐habitat genetic diversity tends to be higher, and among‐habitat differentiation lower, than in the Death Valley model. These two systems must be recognized as distinct and managed differently. We also suggest three areas of experimentation needed to better understand and manage genetic stocks of desert fishes: relationships between heterozygosity and fitness, experimental mixing of similar stocks to examine effects of increased heterozygosity, and analysis of the relative roles of genetic adaptation and phenotypic plasticity in local differentiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Conservation Genetics in the Management of Desert Fishes

Loading next page...
 
/lp/wiley/conservation-genetics-in-the-management-of-desert-fishes-U382nVKuZv
Publisher
Wiley
Copyright
"Copyright © 1988 Wiley Subscription Services, Inc., A Wiley Company"
ISSN
0888-8892
eISSN
1523-1739
D.O.I.
10.1111/j.1523-1739.1988.tb00167.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: The status and security of fishes in North American deserts have steadily declined in this century due to man's activities in this naturally fragile region. We address genetic aspects of the population structure of desert fishes as applicable to conservation and recovery programs by developing two zoogeographic models of isolation and gene flow. In the Death Valley model populations are isolated, with no chance of natural gene flow among them. Genetic diversity within populations tends to be low, but genetic divergence among populations within a species is high. In the Stream Hierarchy model, a complicated hierarchical genetic structure exists and is a function of geographic proximity and connectivity of habitats. Within‐habitat genetic diversity tends to be higher, and among‐habitat differentiation lower, than in the Death Valley model. These two systems must be recognized as distinct and managed differently. We also suggest three areas of experimentation needed to better understand and manage genetic stocks of desert fishes: relationships between heterozygosity and fitness, experimental mixing of similar stocks to examine effects of increased heterozygosity, and analysis of the relative roles of genetic adaptation and phenotypic plasticity in local differentiation.

Journal

Conservation BiologyWiley

Published: Jun 1, 1988

References

  • Effects of abiotic disturbance on coexistence of predator‐prey fish species
    Meffe, G. K.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off