Conservation Corridors and Contagious Disease: A Cautionary Note

Conservation Corridors and Contagious Disease: A Cautionary Note Recent conservation proposals frequently include the establishment of corridors to connect isolated patches of wildlife habitat. Much attention has been focused on the potential benefits of corridors with little note given to potentially adverse consequences. A simulation model is developed here to study the effect of corridors on the survival of a metapopulation in the presence of a fatal disease that is spread by direct contact between susceptible and infected individuals. For the disease modeled here, a landscape of patches connected by corridors generally suffers fewer metapopulation extinctions than a landscape of isolated patches. However, under a narrow range of conditions, results suggest that corridors may dramatically increase the probability of metapopulation extinction. This occurs when disease‐induced mortality is low enough to allow infected individuals to spread the disease, but high enough to reduce population levels to the point that random demographic and environmental events cause frequent metapopulation extinctions. This has important implications for the design and management of conservation reserve networks. Although discussion focuses primarily on conservation corridors, the model results apply to any management techniques that increase the movement of individuals among populations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Conservation Corridors and Contagious Disease: A Cautionary Note

Conservation Biology, Volume 8 (1) – Mar 1, 1994

Loading next page...
 
/lp/wiley/conservation-corridors-and-contagious-disease-a-cautionary-note-fHSqisKaiw
Publisher
Wiley
Copyright
Copyright © 1994 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
D.O.I.
10.1046/j.1523-1739.1994.08010256.x
Publisher site
See Article on Publisher Site

Abstract

Recent conservation proposals frequently include the establishment of corridors to connect isolated patches of wildlife habitat. Much attention has been focused on the potential benefits of corridors with little note given to potentially adverse consequences. A simulation model is developed here to study the effect of corridors on the survival of a metapopulation in the presence of a fatal disease that is spread by direct contact between susceptible and infected individuals. For the disease modeled here, a landscape of patches connected by corridors generally suffers fewer metapopulation extinctions than a landscape of isolated patches. However, under a narrow range of conditions, results suggest that corridors may dramatically increase the probability of metapopulation extinction. This occurs when disease‐induced mortality is low enough to allow infected individuals to spread the disease, but high enough to reduce population levels to the point that random demographic and environmental events cause frequent metapopulation extinctions. This has important implications for the design and management of conservation reserve networks. Although discussion focuses primarily on conservation corridors, the model results apply to any management techniques that increase the movement of individuals among populations.

Journal

Conservation BiologyWiley

Published: Mar 1, 1994

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off