Competing harvesting strategies in a simulated population under uncertainty

Competing harvesting strategies in a simulated population under uncertainty We present a case study of the use of simulation modelling to develop and test strategies for managing populations under uncertainty. Strategies that meet a stock conservation criterion under a base case scenario are subjected to a set of robustness trials, including biased and highly variable abundance estimates and poaching. Strategy performance is assessed with respect to a conservation criterion, the revenues achieved and their variability. Strategies that harvest heavily, even when the population is apparently very large, perform badly in the robustness trials. Setting a threshold below which harvesting does not take place, and above which all individuals are harvested, does not provide effective protection against over‐harvesting. Strategies that rely on population growth rates rather than estimates of population size are more robust to biased estimates. The strategies that are most robust to uncertainty are simple, involving harvesting a relatively small proportion of the population each year. The simulation modelling approach to exploring harvesting strategies is suggested as a useful tool for the assessment of the performance of competing strategies under uncertainty. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Animal Conservation Wiley

Competing harvesting strategies in a simulated population under uncertainty

Loading next page...
 
/lp/wiley/competing-harvesting-strategies-in-a-simulated-population-under-29UNEmV0Dy
Publisher
Wiley
Copyright
"Copyright © 2001 Wiley Subscription Services, Inc., A Wiley Company"
ISSN
1367-9430
eISSN
1469-1795
D.O.I.
10.1017/S1367943001001184
Publisher site
See Article on Publisher Site

Abstract

We present a case study of the use of simulation modelling to develop and test strategies for managing populations under uncertainty. Strategies that meet a stock conservation criterion under a base case scenario are subjected to a set of robustness trials, including biased and highly variable abundance estimates and poaching. Strategy performance is assessed with respect to a conservation criterion, the revenues achieved and their variability. Strategies that harvest heavily, even when the population is apparently very large, perform badly in the robustness trials. Setting a threshold below which harvesting does not take place, and above which all individuals are harvested, does not provide effective protection against over‐harvesting. Strategies that rely on population growth rates rather than estimates of population size are more robust to biased estimates. The strategies that are most robust to uncertainty are simple, involving harvesting a relatively small proportion of the population each year. The simulation modelling approach to exploring harvesting strategies is suggested as a useful tool for the assessment of the performance of competing strategies under uncertainty.

Journal

Animal ConservationWiley

Published: May 1, 2001

References

  • Marine reserves are necessary but not sufficient for marine conservation
    Allison, G. W.; Lubchenco, J.; Carr, M. H.
  • Whales, seals, fish and man
    Cooke, J. G.
  • Are age‐structured models appropriate for catch‐effort data
    Ludwig, D.; Walters, C. J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off