Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis

Compensatory density dependence in fish populations: importance, controversy, understanding and... Density‐dependent processes such as growth, survival, reproduction and movement are compensatory if their rates change in response to variation in population density (or numbers) such that they result in a slowed population growth rate at high densities and promote a numerical increase of the population at low densities. Compensatory density dependence is important to fisheries management because it operates to offset the losses of individuals. While the concept of compensation is straightforward, it remains one of the most controversial issues in population dynamics. The difficulties arise when going from general concepts to specific populations. Compensation is usually quantified using some combination of spawner–recruit analysis, long‐term field monitoring or manipulative studies, and computer modelling. Problems arise because there are limitations to each of these approaches, and these limitations generally originate from the high uncertainty associated with field measurements. We offer a hierarchical approach to predicting and understanding compensation that ranges from the very general, using basic life‐history theory, to the highly site‐specific, using detailed population models. We analyse a spawner–recruit database to test the predictions about compensation and compensatory reserve that derive from a three‐endpoint life‐history framework designed for fish. We then summarise field examples of density dependence in specific processes. Selected long‐term field monitoring studies, manipulative studies and computer modelling examples are then highlighted that illustrate how density‐dependent processes led to compensatory responses at the population level. Some theoretical and empirical advances that offer hope for progress in the future on the compensation issue are discussed. We advocate an approach to compensation that involves process‐level understanding of the underlying mechanisms, life‐history theory, careful analysis of field data, and matrix and individual‐based modelling. There will always be debate if the quantification of compensation does not include some degree of understanding of the underlying mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fish and Fisheries Wiley

Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis

Loading next page...
 
/lp/wiley/compensatory-density-dependence-in-fish-populations-importance-NoGD697gAR
Publisher
Wiley
Copyright
Copyright © 2001 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1467-2960
eISSN
1467-2979
D.O.I.
10.1046/j.1467-2960.2001.00056.x
Publisher site
See Article on Publisher Site

Abstract

Density‐dependent processes such as growth, survival, reproduction and movement are compensatory if their rates change in response to variation in population density (or numbers) such that they result in a slowed population growth rate at high densities and promote a numerical increase of the population at low densities. Compensatory density dependence is important to fisheries management because it operates to offset the losses of individuals. While the concept of compensation is straightforward, it remains one of the most controversial issues in population dynamics. The difficulties arise when going from general concepts to specific populations. Compensation is usually quantified using some combination of spawner–recruit analysis, long‐term field monitoring or manipulative studies, and computer modelling. Problems arise because there are limitations to each of these approaches, and these limitations generally originate from the high uncertainty associated with field measurements. We offer a hierarchical approach to predicting and understanding compensation that ranges from the very general, using basic life‐history theory, to the highly site‐specific, using detailed population models. We analyse a spawner–recruit database to test the predictions about compensation and compensatory reserve that derive from a three‐endpoint life‐history framework designed for fish. We then summarise field examples of density dependence in specific processes. Selected long‐term field monitoring studies, manipulative studies and computer modelling examples are then highlighted that illustrate how density‐dependent processes led to compensatory responses at the population level. Some theoretical and empirical advances that offer hope for progress in the future on the compensation issue are discussed. We advocate an approach to compensation that involves process‐level understanding of the underlying mechanisms, life‐history theory, careful analysis of field data, and matrix and individual‐based modelling. There will always be debate if the quantification of compensation does not include some degree of understanding of the underlying mechanisms.

Journal

Fish and FisheriesWiley

Published: Dec 1, 2001

References

  • Predator responses, prey refuges, and density‐dependent mortality of a marine fish
    Anderson, Anderson

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off