Comparison of Relativistic Microburst Activity Seen by SAMPEX With Ground‐Based Wave Measurements at Halley, Antarctica

Comparison of Relativistic Microburst Activity Seen by SAMPEX With Ground‐Based Wave... Relativistic electron microbursts are a known radiation belt particle precipitation phenomenon; however, experimental evidence of their drivers in space have just begun to be observed. Recent modeling efforts have shown that two different wave modes (whistler mode chorus waves and electromagnetic ion cyclotron (EMIC) waves) are capable of causing relativistic microbursts. We use the very low frequency/extremely low frequency Logger Experiment and search coil magnetometer at Halley, Antarctica, to investigate the ground‐based wave activity at the time of the relativistic microbursts observed by the Solar Anomalous Magnetospheric Particle Explorer. We present three case studies of relativistic microburst events, which have one or both of the wave modes present in ground‐based observations at Halley. To extend and solidify our case study results, we conduct superposed epoch analyses of the wave activity present at the time of the relativistic microburst events. Increased very low frequency wave amplitude is present at the time of the relativistic microburst events, identified as whistler mode chorus wave activity. However, there is also an increase in Pc1–Pc2 wave power at the time of the relativistic microburst events, but it is identified as broadband noise and not structured EMIC emissions. We conclude that whistler mode chorus waves are, most likely, the primary drivers of relativistic microbursts. However, case studies confirm the potential of EMIC waves as an occasional driver of relativistic microbursts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Space Physics Wiley

Comparison of Relativistic Microburst Activity Seen by SAMPEX With Ground‐Based Wave Measurements at Halley, Antarctica

Loading next page...
 
/lp/wiley/comparison-of-relativistic-microburst-activity-seen-by-sampex-with-xGoQsNDWtY
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-9380
eISSN
2169-9402
D.O.I.
10.1002/2017JA024754
Publisher site
See Article on Publisher Site

Abstract

Relativistic electron microbursts are a known radiation belt particle precipitation phenomenon; however, experimental evidence of their drivers in space have just begun to be observed. Recent modeling efforts have shown that two different wave modes (whistler mode chorus waves and electromagnetic ion cyclotron (EMIC) waves) are capable of causing relativistic microbursts. We use the very low frequency/extremely low frequency Logger Experiment and search coil magnetometer at Halley, Antarctica, to investigate the ground‐based wave activity at the time of the relativistic microbursts observed by the Solar Anomalous Magnetospheric Particle Explorer. We present three case studies of relativistic microburst events, which have one or both of the wave modes present in ground‐based observations at Halley. To extend and solidify our case study results, we conduct superposed epoch analyses of the wave activity present at the time of the relativistic microburst events. Increased very low frequency wave amplitude is present at the time of the relativistic microburst events, identified as whistler mode chorus wave activity. However, there is also an increase in Pc1–Pc2 wave power at the time of the relativistic microburst events, but it is identified as broadband noise and not structured EMIC emissions. We conclude that whistler mode chorus waves are, most likely, the primary drivers of relativistic microbursts. However, case studies confirm the potential of EMIC waves as an occasional driver of relativistic microbursts.

Journal

Journal of Geophysical Research: Space PhysicsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial