Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media

Combining finite element and finite volume methods for efficient multiphase flow simulations in... The permeability of the Earth's crust commonly varies over many orders of magnitude. Flow velocity can range over several orders of magnitude in structures of interest that vary in scale from centimeters to kilometers. To accurately and efficiently model multiphase flow in geologic media, we introduce a fully conservative node‐centered finite volume method coupled with a Galerkin finite element method on an unstructured triangular grid with a complementary finite volume subgrid. The effectiveness of this approach is demonstrated by comparison with traditional solution methods and by multiphase flow simulations for heterogeneous permeability fields including complex geometries that produce transport parameters and lengths scales varying over four orders of magnitude. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geofluids Wiley

Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media

Loading next page...
 
/lp/wiley/combining-finite-element-and-finite-volume-methods-for-efficient-j1tqKbbNwL
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1468-8115
eISSN
1468-8123
D.O.I.
10.1111/j.1468-8123.2004.00093.x
Publisher site
See Article on Publisher Site

Abstract

The permeability of the Earth's crust commonly varies over many orders of magnitude. Flow velocity can range over several orders of magnitude in structures of interest that vary in scale from centimeters to kilometers. To accurately and efficiently model multiphase flow in geologic media, we introduce a fully conservative node‐centered finite volume method coupled with a Galerkin finite element method on an unstructured triangular grid with a complementary finite volume subgrid. The effectiveness of this approach is demonstrated by comparison with traditional solution methods and by multiphase flow simulations for heterogeneous permeability fields including complex geometries that produce transport parameters and lengths scales varying over four orders of magnitude.

Journal

GeofluidsWiley

Published: Nov 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off