Collinearity: a review of methods to deal with it and a simulation study evaluating their performance

Collinearity: a review of methods to deal with it and a simulation study evaluating their... Collinearity refers to the non independence of predictor variables, usually in a regression‐type analysis. It is a common feature of any descriptive ecological data set and can be a problem for parameter estimation because it inflates the variance of regression parameters and hence potentially leads to the wrong identification of relevant predictors in a statistical model. Collinearity is a severe problem when a model is trained on data from one region or time, and predicted to another with a different or unknown structure of collinearity. To demonstrate the reach of the problem of collinearity in ecology, we show how relationships among predictors differ between biomes, change over spatial scales and through time. Across disciplines, different approaches to addressing collinearity problems have been developed, ranging from clustering of predictors, threshold‐based pre‐selection, through latent variable methods, to shrinkage and regularisation. Using simulated data with five predictor‐response relationships of increasing complexity and eight levels of collinearity we compared ways to address collinearity with standard multiple regression and machine‐learning approaches. We assessed the performance of each approach by testing its impact on prediction to new data. In the extreme, we tested whether the methods were able to identify the true underlying relationship in a training dataset with strong collinearity by evaluating its performance on a test dataset without any collinearity. We found that methods specifically designed for collinearity, such as latent variable methods and tree based models, did not outperform the traditional GLM and threshold‐based pre‐selection. Our results highlight the value of GLM in combination with penalised methods (particularly ridge) and threshold‐based pre‐selection when omitted variables are considered in the final interpretation. However, all approaches tested yielded degraded predictions under change in collinearity structure and the ‘folk lore’‐thresholds of correlation coefficients between predictor variables of |r| >0.7 was an appropriate indicator for when collinearity begins to severely distort model estimation and subsequent prediction. The use of ecological understanding of the system in pre‐analysis variable selection and the choice of the least sensitive statistical approaches reduce the problems of collinearity, but cannot ultimately solve them. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecography Wiley

Loading next page...
 
/lp/wiley/collinearity-a-review-of-methods-to-deal-with-it-and-a-simulation-d6dOaushZY
Publisher
Wiley
Copyright
© 2012 The Authors
ISSN
0906-7590
eISSN
1600-0587
DOI
10.1111/j.1600-0587.2012.07348.x
Publisher site
See Article on Publisher Site

Abstract

Collinearity refers to the non independence of predictor variables, usually in a regression‐type analysis. It is a common feature of any descriptive ecological data set and can be a problem for parameter estimation because it inflates the variance of regression parameters and hence potentially leads to the wrong identification of relevant predictors in a statistical model. Collinearity is a severe problem when a model is trained on data from one region or time, and predicted to another with a different or unknown structure of collinearity. To demonstrate the reach of the problem of collinearity in ecology, we show how relationships among predictors differ between biomes, change over spatial scales and through time. Across disciplines, different approaches to addressing collinearity problems have been developed, ranging from clustering of predictors, threshold‐based pre‐selection, through latent variable methods, to shrinkage and regularisation. Using simulated data with five predictor‐response relationships of increasing complexity and eight levels of collinearity we compared ways to address collinearity with standard multiple regression and machine‐learning approaches. We assessed the performance of each approach by testing its impact on prediction to new data. In the extreme, we tested whether the methods were able to identify the true underlying relationship in a training dataset with strong collinearity by evaluating its performance on a test dataset without any collinearity. We found that methods specifically designed for collinearity, such as latent variable methods and tree based models, did not outperform the traditional GLM and threshold‐based pre‐selection. Our results highlight the value of GLM in combination with penalised methods (particularly ridge) and threshold‐based pre‐selection when omitted variables are considered in the final interpretation. However, all approaches tested yielded degraded predictions under change in collinearity structure and the ‘folk lore’‐thresholds of correlation coefficients between predictor variables of |r| >0.7 was an appropriate indicator for when collinearity begins to severely distort model estimation and subsequent prediction. The use of ecological understanding of the system in pre‐analysis variable selection and the choice of the least sensitive statistical approaches reduce the problems of collinearity, but cannot ultimately solve them.

Journal

EcographyWiley

Published: Jan 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off