Cold Ion Heating by Magnetosonic Waves in a Density Cavity of the Plasmasphere

Cold Ion Heating by Magnetosonic Waves in a Density Cavity of the Plasmasphere Fast magnetosonic (MS) waves play an important role in the dynamics of the inner magnetosphere. Theoretical prediction and simulation have demonstrated that MS waves can heat cold ions. However, direct observational evidence of cold ion heating by MS waves has so far remained elusive. In this paper, we show a typical event of cold ion heating by magnetosonic waves in a density cavity of the plasmasphere with observations of the Van Allen Probe mission on 22 August 2013. During enhancements of the MS wave intensity in the density cavity, the fluxes of trapped H+ and He+ ions with energies of 10–100 eV were observed to increase, implying that cold plasmaspheric ions were heated through high‐order resonances with the MS waves. Based on simultaneous observations of ring current protons, we have calculated local linear growth rates, which demonstrate that magnetosonic waves can be locally generated in the density cavity. Our results provide a direct observational proof of the energy coupling process between the ring current and plasmasphere; that is, through exciting MS waves, the free energy stored in the ring current protons with ring distributions is released. In the density cavity of the plasmasphere, both cold H+ and He+ ions are heated by MS waves. As a result, the energy of the ring current can be transferred into the plasmasphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Space Physics Wiley

Cold Ion Heating by Magnetosonic Waves in a Density Cavity of the Plasmasphere

Loading next page...
 
/lp/wiley/cold-ion-heating-by-magnetosonic-waves-in-a-density-cavity-of-the-0jmyLgK0r0
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-9380
eISSN
2169-9402
D.O.I.
10.1002/2017JA024919
Publisher site
See Article on Publisher Site

Abstract

Fast magnetosonic (MS) waves play an important role in the dynamics of the inner magnetosphere. Theoretical prediction and simulation have demonstrated that MS waves can heat cold ions. However, direct observational evidence of cold ion heating by MS waves has so far remained elusive. In this paper, we show a typical event of cold ion heating by magnetosonic waves in a density cavity of the plasmasphere with observations of the Van Allen Probe mission on 22 August 2013. During enhancements of the MS wave intensity in the density cavity, the fluxes of trapped H+ and He+ ions with energies of 10–100 eV were observed to increase, implying that cold plasmaspheric ions were heated through high‐order resonances with the MS waves. Based on simultaneous observations of ring current protons, we have calculated local linear growth rates, which demonstrate that magnetosonic waves can be locally generated in the density cavity. Our results provide a direct observational proof of the energy coupling process between the ring current and plasmasphere; that is, through exciting MS waves, the free energy stored in the ring current protons with ring distributions is released. In the density cavity of the plasmasphere, both cold H+ and He+ ions are heated by MS waves. As a result, the energy of the ring current can be transferred into the plasmasphere.

Journal

Journal of Geophysical Research: Space PhysicsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off