Climate model simulations of the equilibrium climatic response to increased carbon dioxide

Climate model simulations of the equilibrium climatic response to increased carbon dioxide The first assessments of the potential climatic effects of increased CO2 were performed using simplified climate models, namely, energy balance models (EBMs) and radiative‐convective models (RCMs). A wide range of surface temperature warming has been obtained by surface EBMs as a result of the inherent difficulty of these models in specifying the behavior of the climate system away from the energy balance level. RCMs have given estimates of ΔTs for a CO2 doubling that range from 0.48° to 4.2°C. This response can be characterized by ΔTs = ΔRTG0/(1 ‐ f), where ΔRT is the radiative forcing at the tropopause due to the CO2 doubling (∼4 W m−2), G0 is the gain of the climate system without feedbacks (∼0.3°C/(W m−2)), and f is the feedback. The feedback processes in RCMs include water vapor feedback (f is 0.3 to 0.4), moist adiabatic lapse rate feedback (f is −0.25 to −0.4), cloud altitude feedback (f is 0.15 to 0.30), cloud cover feedback (f is unknown), cloud optical depth feedback (f is 0 to −1.32), and surface albedo feedback (f is 0.14 to 0.19). However, these feedbacks can be predicted credibly only by physically based models that include the essential dynamics and thermodynamics of the feedback processes. Such physically based models are the general circulation models (GCMs). The earliest GCM simulations of CO2‐induced climate change were performed without the annual insolation cycle. These “annual mean” simulations gave for a CO2 doubling a global mean surface air temperature warming of 1.3° to 3.9°C, an increase in the global mean precipitation rate of 2.7 to 7.8%, and an indication of a soil moisture drying in the middle latitudes. The first GCM simulation of the seasonal variation of CO2‐induced climate change was performed for a CO2 quadrupling and obtained annual global mean surface temperature and precipitation changes of 4.1°C and 6.7%, respectively. Substantial seasonal differences in the CO2‐induced climate changes were found, especially in polar latitudes where the warming was maximum in winter and in the middle latitudes of the northern hemisphere where a soil moisture desiccation was found in summer. Recently, three CO2‐doubling experiments have been performed with GCMs that include the annual insolation cycle. These seasonal simulations give an annual global mean warming of 3.5° to 4.2°C and precipitation increases of 7.1 to 11%. These changes are approximately twice as large as those implied for a CO2 doubling by the earliest seasonal simulation, apparently as a result of a positive cloud feedback. The geographical distributions of the CO2‐induced warming obtained by the recent simulations agree qualitatively but not quantitatively. Furthermore, the precipitation and soil moisture changes do not agree quantitatively and even show qualitative differences. In particular, the summertime soil moisture drying in middle‐latitudes is simulated by only one of the GCMs. In order to improve the state of the art in simulating the equilibrium climatic change induced by increased CO2 concentrations, it is recommended first that the contemporary GCM simulations be analyzed to determine the feedback processes responsible for their differences and second that the parameterization of these processes in the GCMs be validated against highly detailed models and observations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews of Geophysics Wiley

Climate model simulations of the equilibrium climatic response to increased carbon dioxide

Loading next page...
 
/lp/wiley/climate-model-simulations-of-the-equilibrium-climatic-response-to-UWYEZp4z0H
Publisher
Wiley
Copyright
Copyright © 1987 by the American Geophysical Union.
ISSN
8755-1209
eISSN
1944-9208
DOI
10.1029/RG025i004p00760
Publisher site
See Article on Publisher Site

Abstract

The first assessments of the potential climatic effects of increased CO2 were performed using simplified climate models, namely, energy balance models (EBMs) and radiative‐convective models (RCMs). A wide range of surface temperature warming has been obtained by surface EBMs as a result of the inherent difficulty of these models in specifying the behavior of the climate system away from the energy balance level. RCMs have given estimates of ΔTs for a CO2 doubling that range from 0.48° to 4.2°C. This response can be characterized by ΔTs = ΔRTG0/(1 ‐ f), where ΔRT is the radiative forcing at the tropopause due to the CO2 doubling (∼4 W m−2), G0 is the gain of the climate system without feedbacks (∼0.3°C/(W m−2)), and f is the feedback. The feedback processes in RCMs include water vapor feedback (f is 0.3 to 0.4), moist adiabatic lapse rate feedback (f is −0.25 to −0.4), cloud altitude feedback (f is 0.15 to 0.30), cloud cover feedback (f is unknown), cloud optical depth feedback (f is 0 to −1.32), and surface albedo feedback (f is 0.14 to 0.19). However, these feedbacks can be predicted credibly only by physically based models that include the essential dynamics and thermodynamics of the feedback processes. Such physically based models are the general circulation models (GCMs). The earliest GCM simulations of CO2‐induced climate change were performed without the annual insolation cycle. These “annual mean” simulations gave for a CO2 doubling a global mean surface air temperature warming of 1.3° to 3.9°C, an increase in the global mean precipitation rate of 2.7 to 7.8%, and an indication of a soil moisture drying in the middle latitudes. The first GCM simulation of the seasonal variation of CO2‐induced climate change was performed for a CO2 quadrupling and obtained annual global mean surface temperature and precipitation changes of 4.1°C and 6.7%, respectively. Substantial seasonal differences in the CO2‐induced climate changes were found, especially in polar latitudes where the warming was maximum in winter and in the middle latitudes of the northern hemisphere where a soil moisture desiccation was found in summer. Recently, three CO2‐doubling experiments have been performed with GCMs that include the annual insolation cycle. These seasonal simulations give an annual global mean warming of 3.5° to 4.2°C and precipitation increases of 7.1 to 11%. These changes are approximately twice as large as those implied for a CO2 doubling by the earliest seasonal simulation, apparently as a result of a positive cloud feedback. The geographical distributions of the CO2‐induced warming obtained by the recent simulations agree qualitatively but not quantitatively. Furthermore, the precipitation and soil moisture changes do not agree quantitatively and even show qualitative differences. In particular, the summertime soil moisture drying in middle‐latitudes is simulated by only one of the GCMs. In order to improve the state of the art in simulating the equilibrium climatic change induced by increased CO2 concentrations, it is recommended first that the contemporary GCM simulations be analyzed to determine the feedback processes responsible for their differences and second that the parameterization of these processes in the GCMs be validated against highly detailed models and observations.

Journal

Reviews of GeophysicsWiley

Published: May 1, 1987

References

  • Statistical procedures for making inferences about precipitation changes simulated by an atmospheric general circulation model
    Katz, Katz
  • The seasonal response of a general circulation model to changes in CO 2 and sea temperature
    Mitchell, Mitchell
  • Simulation of the atmospheric response to soil moisture anomalies over Europe
    Rowntree, Rowntree; Bolton, Bolton

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off