Climate and litter quality controls on decomposition: An analysis of modeling approaches

Climate and litter quality controls on decomposition: An analysis of modeling approaches Four mathematical models simulated decay of two litter types of contrasting quality over a 2‐year period at four sites in North America. The litter types were Drypetes glauca and Triticum aestivum, representing litter with high and low nitrogen:lignin ratios, respectively. The field sites were an Arctic tussock tundra (Alaska, United States), a warm desert (New Mexico, United States), a temperate deciduous forest (New York, United States) and a tropical rain forest (Puerto Rico). Models captured the overall patterns of site and litter quality controls on decomposition; both simulated and observed mass losses were higher in warm, moist environments (both forests) than in cold (tundra) or dry sites (desert), and simulated and observed decay was more rapid for Drypetes than Triticum. However, predictions tended to underestimate litter mass loss in the tropical forest and overestimate decay in the desert and tundra, suggesting that site controls in model formulations require refinement for use under such a broad range of conditions. Also, predicted nitrogen content of litter residues was lower than observed in Drypetes litter and higher than observed for Triticum. Thus mechanisms describing loss of nitrogen from high‐quality litter and nitrogen immobilization by low‐quality litter were not captured by model structure. Individual model behaviors revealed different sensitivities to controlling factors that were related to differences in model formulation. As these models represent working hypotheses regarding the process of litter decay, results emphasize the need for greater resolution of climate and litter quality controls. Results also demonstrate the need for finer resolution of the relationships between carbon and nitrogen dynamics during decomposition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Biogeochemical Cycles Wiley

Climate and litter quality controls on decomposition: An analysis of modeling approaches

Loading next page...
 
/lp/wiley/climate-and-litter-quality-controls-on-decomposition-an-analysis-of-R2fLA2ZmR0
Publisher
Wiley
Copyright
Copyright © 1999 by the American Geophysical Union.
ISSN
0886-6236
eISSN
1944-9224
D.O.I.
10.1029/1998GB900014
Publisher site
See Article on Publisher Site

Abstract

Four mathematical models simulated decay of two litter types of contrasting quality over a 2‐year period at four sites in North America. The litter types were Drypetes glauca and Triticum aestivum, representing litter with high and low nitrogen:lignin ratios, respectively. The field sites were an Arctic tussock tundra (Alaska, United States), a warm desert (New Mexico, United States), a temperate deciduous forest (New York, United States) and a tropical rain forest (Puerto Rico). Models captured the overall patterns of site and litter quality controls on decomposition; both simulated and observed mass losses were higher in warm, moist environments (both forests) than in cold (tundra) or dry sites (desert), and simulated and observed decay was more rapid for Drypetes than Triticum. However, predictions tended to underestimate litter mass loss in the tropical forest and overestimate decay in the desert and tundra, suggesting that site controls in model formulations require refinement for use under such a broad range of conditions. Also, predicted nitrogen content of litter residues was lower than observed in Drypetes litter and higher than observed for Triticum. Thus mechanisms describing loss of nitrogen from high‐quality litter and nitrogen immobilization by low‐quality litter were not captured by model structure. Individual model behaviors revealed different sensitivities to controlling factors that were related to differences in model formulation. As these models represent working hypotheses regarding the process of litter decay, results emphasize the need for greater resolution of climate and litter quality controls. Results also demonstrate the need for finer resolution of the relationships between carbon and nitrogen dynamics during decomposition.

Journal

Global Biogeochemical CyclesWiley

Published: Jun 1, 1999

References

  • Modeling leaching as a decomposition process in humid, montane forests
    Currie, Currie; Aber, Aber
  • The failure of nitrogen and lignin control of decomposition in a North American desert
    Schaefer, Schaefer; Steinberger, Steinberger; Whitford, Whitford

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off