Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling

Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling Largely unknown mechanisms restrain motion of clay‐rich, slow‐moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow‐moving landslide typical of thousands in Northern California, USA, to decipher hydrologic‐mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore‐water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope‐stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement five to six months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling

Loading next page...
 
/lp/wiley/clayey-landslide-initiation-and-acceleration-strongly-modulated-by-sPHYaLO3KG
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
D.O.I.
10.1002/2017GL076807
Publisher site
See Article on Publisher Site

Abstract

Largely unknown mechanisms restrain motion of clay‐rich, slow‐moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow‐moving landslide typical of thousands in Northern California, USA, to decipher hydrologic‐mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore‐water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope‐stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement five to six months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

Journal

Geophysical Research LettersWiley

Published: Jan 28, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off