Class—A Canadian land surface scheme for GCMS. I. Soil model

Class—A Canadian land surface scheme for GCMS. I. Soil model A new GCM land surface scheme is introduced, incorporating three soil layers with physically based calculations of heat and moisture transfers at the surface and across the layer boundaries. Snow‐covered and snow‐free areas are treated separately. The energy balance equation is solved iteratively for the surface temperature; the surface infiltration rate is calculated using a simplified theoretical analysis allowing for surface ponding. Snow cover is modelled as a discrete ‘soil’ layer. The results generated by CLASS are compared with those of an older model incorporating the force‐restore method for the calculation of surface temperature and a bucket‐type formulation for the ground moisture. Several month‐long test runs are carried out in stand‐alone mode. It is shown that the surface temperature in the old scheme responds more slowly to diurnal forcing and more quickly to longer term forcing than that modelled by CLASS, while its one‐layer representation of soil moisture proves incapable of reproducing changes in the surface fluxes owing to surface variations of moisture content. Finally, the lumped treatment of snow and soil in the old scheme results in an extremely fast disappearance of the snow pack under certain conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Climatology Wiley

Class—A Canadian land surface scheme for GCMS. I. Soil model

Loading next page...
 
/lp/wiley/class-a-canadian-land-surface-scheme-for-gcms-i-soil-model-pYV0GRZHMe
Publisher
Wiley
Copyright
Copyright © 1991 John Wiley & Sons, Ltd
ISSN
0899-8418
eISSN
1097-0088
D.O.I.
10.1002/joc.3370110202
Publisher site
See Article on Publisher Site

Abstract

A new GCM land surface scheme is introduced, incorporating three soil layers with physically based calculations of heat and moisture transfers at the surface and across the layer boundaries. Snow‐covered and snow‐free areas are treated separately. The energy balance equation is solved iteratively for the surface temperature; the surface infiltration rate is calculated using a simplified theoretical analysis allowing for surface ponding. Snow cover is modelled as a discrete ‘soil’ layer. The results generated by CLASS are compared with those of an older model incorporating the force‐restore method for the calculation of surface temperature and a bucket‐type formulation for the ground moisture. Several month‐long test runs are carried out in stand‐alone mode. It is shown that the surface temperature in the old scheme responds more slowly to diurnal forcing and more quickly to longer term forcing than that modelled by CLASS, while its one‐layer representation of soil moisture proves incapable of reproducing changes in the surface fluxes owing to surface variations of moisture content. Finally, the lumped treatment of snow and soil in the old scheme results in an extremely fast disappearance of the snow pack under certain conditions.

Journal

International Journal of ClimatologyWiley

Published: Mar 1, 1991

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off