Chromatic mechanisms in lateral geniculate nucleus of macaque.

Chromatic mechanisms in lateral geniculate nucleus of macaque. This paper introduces a new technique for the analysis of the chromatic properties of neurones, and applies it to cells in the lateral geniculate nucleus (l.g.n.) of macaque. The method exploits the fact that for any cell that combines linearly the signals from cones there is a restricted set of lights to which it is equally sensitive, and whose members can be exchanged for one another without evoking a response. Stimuli are represented in a three‐dimensional space defined by an axis along which only luminance varies, without change in chromaticity, a 'constant B' axis along which chromaticity varies without changing the excitation of blue‐sensitive (B) cones, a 'constant R & G' axis along which chromaticity varies without change in the excitation of red‐sensitive (R) or green‐sensitive (G) cones. The orthogonal axes intersect at a white point. The isoluminant plane defined by the intersection of the 'constant B' and 'constant R & G' axes contains lights that vary only in chromaticity. In polar coordinates the constant B axis is assigned the azimuth 0‐180 deg, and the constant R & G axis the azimuth 90‐270 deg. Luminance is expressed as elevation above or below the isoluminant plane (‐90 to +90 deg). For any cell that combines cone signals linearly, there is one plane in this space, passing through the white point, that contains all lights that can be exchanged silently. The position of this 'null plane' provides the 'signature' of the cell, and is specified by its azimuth (the direction in which it intersects the isoluminant plane of the stimulus space) and its elevation (its angle of inclination to the isoluminant plane). A colour television receiver was used to produce sinusoidal gratings whose chromaticity and luminance could be modulated along any vector passing through the white point in the space described. The spatial and temporal frequencies of modulation could be varied over a large range. When stimulated by patterns of low spatial and low temporal frequency, two groups of cells in the parvocellular laminae of the l.g.n. were distinguished by the locations of their null planes. The null planes of the larger group were narrowly distributed about an azimuth of 92.6 deg and more broadly about an elevation of 51.5 deg, which suggests that they receive opposed, but not equally balanced, inputs from only R and G cones. These we call R‐G cells.(ABSTRACT TRUNCATED AT 400 WORDS) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Chromatic mechanisms in lateral geniculate nucleus of macaque.

Loading next page...
 
/lp/wiley/chromatic-mechanisms-in-lateral-geniculate-nucleus-of-macaque-PoaZRbUtaP
Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
D.O.I.
10.1113/jphysiol.1984.sp015499
Publisher site
See Article on Publisher Site

Abstract

This paper introduces a new technique for the analysis of the chromatic properties of neurones, and applies it to cells in the lateral geniculate nucleus (l.g.n.) of macaque. The method exploits the fact that for any cell that combines linearly the signals from cones there is a restricted set of lights to which it is equally sensitive, and whose members can be exchanged for one another without evoking a response. Stimuli are represented in a three‐dimensional space defined by an axis along which only luminance varies, without change in chromaticity, a 'constant B' axis along which chromaticity varies without changing the excitation of blue‐sensitive (B) cones, a 'constant R & G' axis along which chromaticity varies without change in the excitation of red‐sensitive (R) or green‐sensitive (G) cones. The orthogonal axes intersect at a white point. The isoluminant plane defined by the intersection of the 'constant B' and 'constant R & G' axes contains lights that vary only in chromaticity. In polar coordinates the constant B axis is assigned the azimuth 0‐180 deg, and the constant R & G axis the azimuth 90‐270 deg. Luminance is expressed as elevation above or below the isoluminant plane (‐90 to +90 deg). For any cell that combines cone signals linearly, there is one plane in this space, passing through the white point, that contains all lights that can be exchanged silently. The position of this 'null plane' provides the 'signature' of the cell, and is specified by its azimuth (the direction in which it intersects the isoluminant plane of the stimulus space) and its elevation (its angle of inclination to the isoluminant plane). A colour television receiver was used to produce sinusoidal gratings whose chromaticity and luminance could be modulated along any vector passing through the white point in the space described. The spatial and temporal frequencies of modulation could be varied over a large range. When stimulated by patterns of low spatial and low temporal frequency, two groups of cells in the parvocellular laminae of the l.g.n. were distinguished by the locations of their null planes. The null planes of the larger group were narrowly distributed about an azimuth of 92.6 deg and more broadly about an elevation of 51.5 deg, which suggests that they receive opposed, but not equally balanced, inputs from only R and G cones. These we call R‐G cells.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal

The Journal of PhysiologyWiley

Published: Dec 1, 1984

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off