Chlorophyll to Carbon Ratio Derived From a Global Ecosystem Model With Photodamage

Chlorophyll to Carbon Ratio Derived From a Global Ecosystem Model With Photodamage Phytoplankton harvests light by integrating chlorophyll in protein‐pigment complexes (photosystems) that are variable in number and size. In ecosystem models, the capacity of light harvesting is described as the pool of chlorophyll. Since most of the variability in phytoplankton chlorophyll content is driven by acclimation to changing nutrient and light conditions, photoacclimation is generally parameterized as a regulation of chlorophyll synthesis with changing light. However, photosystems can also be degraded, and of the few process‐based models that have been proposed in the literature for the representation of their degradation and repair, none of them have been extended to more realistic conditions offered by pelagic biogeochemical models. We proposed three potential parameterizations to treat the degradation of photosystems as a function of light intensity and included them as a source of variation in the size of the chlorophyll pool in Regulated Ecosystem Model, version 2 (REcoM2). These model versions provided chlorophyll values highly correlated with satellite chlorophyll and accurate patterns of the chlorophyll to carbon ratio at global scale. The improvement in the prediction of the ratios was remarkable in scenarios where cells are exposed to periods of low light conditions. By isolating the effects of light and nutrients on the variability of the chlorophyll to carbon ratio and the growth rate, we observed a potential reduction in photosynthetic performance under simultaneous light saturation and nutrient stress. This effect, whose strength depends on the presence of photoprotective mechanisms and the degree of nutrient limitation, allowed to assess the role of photodamage and photoprotection under stress conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Biogeochemical Cycles Wiley

Chlorophyll to Carbon Ratio Derived From a Global Ecosystem Model With Photodamage

Loading next page...
 
/lp/wiley/chlorophyll-to-carbon-ratio-derived-from-a-global-ecosystem-model-with-ohmYPtVhAz
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0886-6236
eISSN
1944-9224
D.O.I.
10.1029/2017GB005850
Publisher site
See Article on Publisher Site

Abstract

Phytoplankton harvests light by integrating chlorophyll in protein‐pigment complexes (photosystems) that are variable in number and size. In ecosystem models, the capacity of light harvesting is described as the pool of chlorophyll. Since most of the variability in phytoplankton chlorophyll content is driven by acclimation to changing nutrient and light conditions, photoacclimation is generally parameterized as a regulation of chlorophyll synthesis with changing light. However, photosystems can also be degraded, and of the few process‐based models that have been proposed in the literature for the representation of their degradation and repair, none of them have been extended to more realistic conditions offered by pelagic biogeochemical models. We proposed three potential parameterizations to treat the degradation of photosystems as a function of light intensity and included them as a source of variation in the size of the chlorophyll pool in Regulated Ecosystem Model, version 2 (REcoM2). These model versions provided chlorophyll values highly correlated with satellite chlorophyll and accurate patterns of the chlorophyll to carbon ratio at global scale. The improvement in the prediction of the ratios was remarkable in scenarios where cells are exposed to periods of low light conditions. By isolating the effects of light and nutrients on the variability of the chlorophyll to carbon ratio and the growth rate, we observed a potential reduction in photosynthetic performance under simultaneous light saturation and nutrient stress. This effect, whose strength depends on the presence of photoprotective mechanisms and the degree of nutrient limitation, allowed to assess the role of photodamage and photoprotection under stress conditions.

Journal

Global Biogeochemical CyclesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off