Characterization and Manipulation of Interfacial Activity for Aqueous Galinstan Dispersions

Characterization and Manipulation of Interfacial Activity for Aqueous Galinstan Dispersions Room temperature liquid eutectic metals have the potential to maintain electrical and thermal conductivity during deformation, a combination of properties difficult to obtain. Two such metals, eutectic gallium–indium (EGaIn) and galinstan (eutectic gallium–indium–tin), exhibit similar flow behavior attributed to a thin oxide shell. Understanding the oxide shell is critical for understanding the interactions that influence mixing and stability of the liquid metals in other media. In this paper, the effect of aqueous HCl on the interfacial tension (IFT), interfacial rheology, and dispersibility of galinstan are systematically evaluated. It is determined that the IFT of galinstan/water and galinstan/1 m HCl are similar (≈530 mN m−1), but at 0.001 to 0.5 m HCl IFT decreases to 160 mN m−1. Similar discontinuous behavior is observed in the interfacial rheology. The low IFT coupled with a mechanically strong interface at intermediate acid concentrations suggests a change in interface composition. This is supported by SnO2 particles, present during the dispersion process, producing more stable galinstan dispersions than Ga2O3 or In2O3. Interestingly, SnO2 also improves the dispersion of EGaIn despite its lack of tin. This new interfacial manipulation method enables galinstan dispersions in a range of aqueous and nonaqueous phases to enhance the electrical and thermal properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Interfaces Wiley

Characterization and Manipulation of Interfacial Activity for Aqueous Galinstan Dispersions

Loading next page...
 
/lp/wiley/characterization-and-manipulation-of-interfacial-activity-for-aqueous-DKrfFO1Fyn
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
2196-7350
eISSN
2196-7350
D.O.I.
10.1002/admi.201701240
Publisher site
See Article on Publisher Site

Abstract

Room temperature liquid eutectic metals have the potential to maintain electrical and thermal conductivity during deformation, a combination of properties difficult to obtain. Two such metals, eutectic gallium–indium (EGaIn) and galinstan (eutectic gallium–indium–tin), exhibit similar flow behavior attributed to a thin oxide shell. Understanding the oxide shell is critical for understanding the interactions that influence mixing and stability of the liquid metals in other media. In this paper, the effect of aqueous HCl on the interfacial tension (IFT), interfacial rheology, and dispersibility of galinstan are systematically evaluated. It is determined that the IFT of galinstan/water and galinstan/1 m HCl are similar (≈530 mN m−1), but at 0.001 to 0.5 m HCl IFT decreases to 160 mN m−1. Similar discontinuous behavior is observed in the interfacial rheology. The low IFT coupled with a mechanically strong interface at intermediate acid concentrations suggests a change in interface composition. This is supported by SnO2 particles, present during the dispersion process, producing more stable galinstan dispersions than Ga2O3 or In2O3. Interestingly, SnO2 also improves the dispersion of EGaIn despite its lack of tin. This new interfacial manipulation method enables galinstan dispersions in a range of aqueous and nonaqueous phases to enhance the electrical and thermal properties.

Journal

Advanced Materials InterfacesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off