Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Characteristics of nitric oxide synthase type I of rat cerebellar astrocytes

Characteristics of nitric oxide synthase type I of rat cerebellar astrocytes We have previously reported that stimulation of astrocyte cultures by particular agonists and calcium ionophores induces cyclic GMP formation through activation of a constitutive nitric oxide synthase (NOS) and that astrocytes from cerebellum show the largest response. In the present work we have used rat cerebellar astrocyte‐enriched primary cultures to identify and characterise the isoform of NOS expressed in these cells. The specific NOS activity in astrocyte homogenates, determined by conversion of (3H)arginine to (3H)citrulline, was ten times lower than in homogenates from cerebellar granule neurons. Upon centrifugation at 100,000g, the astroglial activity was recovered in the supernatant, whereas in neurons around 30% of the activity remained particulate. The cytosolic NOS activities of both astrocytes and granule neurons displayed the same Km for L‐arginine, dependency of calcium, and sensitivity to NOS inhibitors. Expression of NOS‐I in astrocyte cytosolic fractions was revealed by Western blot with a specific polyclonal antiserum against recombinant NOS‐I. Double immunofluorescence labelling using anti‐glial fibrillary acidic protein (GFAP) and anti‐NOS‐I antibodies revealed that a minor population of the GFAP‐positive cells, usually in clusters, presented a strong NOS‐I immunostaining that was predominantly located around the nuclei and had a granular appearance, indicating association with the endoplasmic reticulum‐Golgi system. Astrocytes of stellate morphology also showed immunoreactivity in the processes. Similar staining was observed with the avidin‐biotin‐peroxidase complex using different anti‐NOS‐I antisera. With this method the majority of cells showed a weak NOS‐I immunoreactivity around the nuclei and cytosol. A similar pattern was observed with the NADPH‐diaphorase reaction. These results demonstrate that the NOS‐I expressed in astrocytes presents the same biochemical characteristics as the predominant neuronal isoform but may differ in intracellular location. © 1996 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glia Wiley

Characteristics of nitric oxide synthase type I of rat cerebellar astrocytes

Loading next page...
 
/lp/wiley/characteristics-of-nitric-oxide-synthase-type-i-of-rat-cerebellar-Up0znarAhb
Publisher
Wiley
Copyright
Copyright © 1996 Wiley‐Liss, Inc.
ISSN
0894-1491
eISSN
1098-1136
DOI
10.1002/(SICI)1098-1136(199611)18:3<224::AID-GLIA6>3.0.CO;2-Z
Publisher site
See Article on Publisher Site

Abstract

We have previously reported that stimulation of astrocyte cultures by particular agonists and calcium ionophores induces cyclic GMP formation through activation of a constitutive nitric oxide synthase (NOS) and that astrocytes from cerebellum show the largest response. In the present work we have used rat cerebellar astrocyte‐enriched primary cultures to identify and characterise the isoform of NOS expressed in these cells. The specific NOS activity in astrocyte homogenates, determined by conversion of (3H)arginine to (3H)citrulline, was ten times lower than in homogenates from cerebellar granule neurons. Upon centrifugation at 100,000g, the astroglial activity was recovered in the supernatant, whereas in neurons around 30% of the activity remained particulate. The cytosolic NOS activities of both astrocytes and granule neurons displayed the same Km for L‐arginine, dependency of calcium, and sensitivity to NOS inhibitors. Expression of NOS‐I in astrocyte cytosolic fractions was revealed by Western blot with a specific polyclonal antiserum against recombinant NOS‐I. Double immunofluorescence labelling using anti‐glial fibrillary acidic protein (GFAP) and anti‐NOS‐I antibodies revealed that a minor population of the GFAP‐positive cells, usually in clusters, presented a strong NOS‐I immunostaining that was predominantly located around the nuclei and had a granular appearance, indicating association with the endoplasmic reticulum‐Golgi system. Astrocytes of stellate morphology also showed immunoreactivity in the processes. Similar staining was observed with the avidin‐biotin‐peroxidase complex using different anti‐NOS‐I antisera. With this method the majority of cells showed a weak NOS‐I immunoreactivity around the nuclei and cytosol. A similar pattern was observed with the NADPH‐diaphorase reaction. These results demonstrate that the NOS‐I expressed in astrocytes presents the same biochemical characteristics as the predominant neuronal isoform but may differ in intracellular location. © 1996 Wiley‐Liss, Inc.

Journal

GliaWiley

Published: Nov 1, 1996

References