Characteristic‐based inlet and outlet boundary conditions for incompressible flows

Characteristic‐based inlet and outlet boundary conditions for incompressible flows Determining boundary conditions (BCs) for incompressible flows is such a delicate matter that affects the accuracy of the results. In this research, a new characteristic‐based BC for incompressible Navier‐Stokes equations is introduced. Discretization of equations has been done via finite volume. Additionally, artificial compressibility correction has been employed to deal with equations. Ordinary extrapolation from inner cells of a domain was used as a traditional way to estimate pressure and velocities on solid wall and inlet/outlet boundaries. Here, this method was substituted by the newly proposed BCs based on the characteristics of artificial compressibility equations. To follow this purpose, a computer code has been developed to carry out series of numerical tests for a flow over a backward‐facing step and was applied to a wide range of Reynolds numbers and grid combinations. Calculation of convective and viscous fluxes was done using Jameson's averaging scheme. Employing the characteristic‐based method for determining BCs has shown an improved convergence rate and reduced calculation time comparing with those of traditional ones. Furthermore, with the reduction of domain and computational cells, a similar accuracy was achieved for the results in comparison with the ones obtained from the traditional extrapolation method, and these results were in good agreement with the ones in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal for Numerical Methods in Fluids Wiley

Characteristic‐based inlet and outlet boundary conditions for incompressible flows

Loading next page...
 
/lp/wiley/characteristic-based-inlet-and-outlet-boundary-conditions-for-NY7HqtvcAc
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0271-2091
eISSN
1097-0363
D.O.I.
10.1002/fld.4476
Publisher site
See Article on Publisher Site

Abstract

Determining boundary conditions (BCs) for incompressible flows is such a delicate matter that affects the accuracy of the results. In this research, a new characteristic‐based BC for incompressible Navier‐Stokes equations is introduced. Discretization of equations has been done via finite volume. Additionally, artificial compressibility correction has been employed to deal with equations. Ordinary extrapolation from inner cells of a domain was used as a traditional way to estimate pressure and velocities on solid wall and inlet/outlet boundaries. Here, this method was substituted by the newly proposed BCs based on the characteristics of artificial compressibility equations. To follow this purpose, a computer code has been developed to carry out series of numerical tests for a flow over a backward‐facing step and was applied to a wide range of Reynolds numbers and grid combinations. Calculation of convective and viscous fluxes was done using Jameson's averaging scheme. Employing the characteristic‐based method for determining BCs has shown an improved convergence rate and reduced calculation time comparing with those of traditional ones. Furthermore, with the reduction of domain and computational cells, a similar accuracy was achieved for the results in comparison with the ones obtained from the traditional extrapolation method, and these results were in good agreement with the ones in the literature.

Journal

International Journal for Numerical Methods in FluidsWiley

Published: Jan 30, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off