Changes in the Expression of a Neuronal Surface Protein During Development of Cerebellar Neurones In Vivo and in Culture

Changes in the Expression of a Neuronal Surface Protein During Development of Cerebellar Neurones... Abstract: The expression of the neurone‐specific D2 protein changes both quantitatively and qualitatively during development in vivo and in cultures of cerebellar nerve cells. The total D2 content per unit protein shows a twofold increase in vivo from birth to postnatal day 6, after which it declines progressively to about 50% of the maximal value. This increase can be accounted for by an immature form of the protein anodic D2 being preferentially expressed at the early stages of cerebellar development. After postnatal day 9 this form gradually switches to a mature form cathodic D2. This switch can be mimicked by neuraminidase treatment, suggesting a developmental loss of sialic acid from the D2 protein. In freshly isolated cells the total D2 content per unit protein is only 30% of that in the corresponding intact tissue from 8‐day‐old cerebella, but it increases rapidly during the first 8 days of culture to levels similar to those of the equivalent age in vivo. The switch from anodic D2 to cathodic D2 also occurs at a faster rate in culture, probably reflecting the culture conditions that favour differentiation. The changes in the expression of D2 during development of cerebellar nerve cells in culture suggest that anodic D2 is preferentially expressed on nerve cells that are proliferating, migrating, or in the initial stages of differentiation, whereas cathodic D2 is associated with differentiated neurones. The transition between the two forms appears to occur during the formation of interneuronal contacts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurochemistry Wiley

Changes in the Expression of a Neuronal Surface Protein During Development of Cerebellar Neurones In Vivo and in Culture

Loading next page...
 
/lp/wiley/changes-in-the-expression-of-a-neuronal-surface-protein-during-OZJTKdPSwx
Publisher
Wiley
Copyright
Copyright © 1984 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0022-3042
eISSN
1471-4159
DOI
10.1111/j.1471-4159.1984.tb05390.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: The expression of the neurone‐specific D2 protein changes both quantitatively and qualitatively during development in vivo and in cultures of cerebellar nerve cells. The total D2 content per unit protein shows a twofold increase in vivo from birth to postnatal day 6, after which it declines progressively to about 50% of the maximal value. This increase can be accounted for by an immature form of the protein anodic D2 being preferentially expressed at the early stages of cerebellar development. After postnatal day 9 this form gradually switches to a mature form cathodic D2. This switch can be mimicked by neuraminidase treatment, suggesting a developmental loss of sialic acid from the D2 protein. In freshly isolated cells the total D2 content per unit protein is only 30% of that in the corresponding intact tissue from 8‐day‐old cerebella, but it increases rapidly during the first 8 days of culture to levels similar to those of the equivalent age in vivo. The switch from anodic D2 to cathodic D2 also occurs at a faster rate in culture, probably reflecting the culture conditions that favour differentiation. The changes in the expression of D2 during development of cerebellar nerve cells in culture suggest that anodic D2 is preferentially expressed on nerve cells that are proliferating, migrating, or in the initial stages of differentiation, whereas cathodic D2 is associated with differentiated neurones. The transition between the two forms appears to occur during the formation of interneuronal contacts.

Journal

Journal of NeurochemistryWiley

Published: Nov 1, 1984

References

  • Nervous system specific proteins in developing rat cerebral cells in culture
    Bock, Bock; Yavin, Yavin; Jørgensen, Jørgensen; Yavin, Yavin

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off