Changes in aldolase activity in wild‐type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions

Changes in aldolase activity in wild‐type potato plants are important for acclimation to growth... Summary Even though plastid aldolase catalyses a reversible reaction, does not possess properties allowing it to contribute to ‘fine’ regulation, and would therefore be considered unimportant for the control of metabolism and growth, antisense transformants with a 50–70% decrease in aldolase activity showed an inhibition of photosynthesis and growth. We now show that acclimation of photosynthesis to growth conditions includes and requires changes in plastid aldolase activity. Wild‐type potato plants and transformants were grown at low irradiance (70 μmol m–2 sec–1), and at high irradiance (390 μmol m–2 sec–1) at 400 or 800 p.p.m. carbon dioxide. (i) Ambient photosynthesis was always inhibited by a 30–40% decrease of aldolase activity, the strongest inhibition being observed when plants were growing in high irradiance and elevated carbon dioxide. (ii) The inhibition was due to a low rate of ribulose‐1,5‐bisphosphate regeneration in low light, exacerbated by an inadequate rate of starch synthesis in high light and elevated carbon dioxide. Decreased expression of aldolase in antisense transformants was also accompanied by a decrease of fructose‐1,6‐bisphosphatase protein and activity, and Rubisco activity. Transcript levels for the plastid fructose‐1,6‐bisphosphatase and the small subunit of Rubisco did not decrease. (iii) In wild‐type plants, increasing the growth irradiance from 70 to 390 μmol m–2 sec–1 led to a 15–95% increase of the activity of eight Calvin cycle enzymes, and increasing the carbon dioxide concentration from 400 to 800 p.p.m. led to a 5–35% decrease of these enzyme activities. The largest changes occurred for aldolase, and for transketolase which also catalyses a reversible reaction and is not subject to ‘fine’ regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

Changes in aldolase activity in wild‐type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions

Loading next page...
 
/lp/wiley/changes-in-aldolase-activity-in-wild-type-potato-plants-are-important-NJjT0bNNQs
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
D.O.I.
10.1046/j.1365-313X.1999.00391.x
Publisher site
See Article on Publisher Site

Abstract

Summary Even though plastid aldolase catalyses a reversible reaction, does not possess properties allowing it to contribute to ‘fine’ regulation, and would therefore be considered unimportant for the control of metabolism and growth, antisense transformants with a 50–70% decrease in aldolase activity showed an inhibition of photosynthesis and growth. We now show that acclimation of photosynthesis to growth conditions includes and requires changes in plastid aldolase activity. Wild‐type potato plants and transformants were grown at low irradiance (70 μmol m–2 sec–1), and at high irradiance (390 μmol m–2 sec–1) at 400 or 800 p.p.m. carbon dioxide. (i) Ambient photosynthesis was always inhibited by a 30–40% decrease of aldolase activity, the strongest inhibition being observed when plants were growing in high irradiance and elevated carbon dioxide. (ii) The inhibition was due to a low rate of ribulose‐1,5‐bisphosphate regeneration in low light, exacerbated by an inadequate rate of starch synthesis in high light and elevated carbon dioxide. Decreased expression of aldolase in antisense transformants was also accompanied by a decrease of fructose‐1,6‐bisphosphatase protein and activity, and Rubisco activity. Transcript levels for the plastid fructose‐1,6‐bisphosphatase and the small subunit of Rubisco did not decrease. (iii) In wild‐type plants, increasing the growth irradiance from 70 to 390 μmol m–2 sec–1 led to a 15–95% increase of the activity of eight Calvin cycle enzymes, and increasing the carbon dioxide concentration from 400 to 800 p.p.m. led to a 5–35% decrease of these enzyme activities. The largest changes occurred for aldolase, and for transketolase which also catalyses a reversible reaction and is not subject to ‘fine’ regulation.

Journal

The Plant JournalWiley

Published: Mar 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off