CEREBRAL CARBOHYDRATE METABOLISM DURING ACUTE HYPOXIA AND RECOVERY

CEREBRAL CARBOHYDRATE METABOLISM DURING ACUTE HYPOXIA AND RECOVERY Abstract— The levels of ATP, ADP, AMP and phosphocreatine, of four amino acids, and of 11 intermediates of carbohydrate metabolism in mouse brain were determined after: (1) various degrees of hypoxia; (2) hypoxia combined with anaesthesia; and (3) recovery from severe hypoxia. Glycogen decreased and lactate rose markedly in hypoxia, but levels of ATP and phosphocreatine were normal or near normal even when convulsions and respiratory collapse appeared imminent. During 30 s of complete ischaemia (decapitation) the decline in cerebral ATP and phosphocreatine and the increase in AMP was less in mice previously rendered hypoxic than in control mice. From the changes we calculated that the metabolic rate had decreased by 15 per cent or more during 30 min of hypoxia. Hypoxia was also associated with decreases of cerebral 6‐phosphogluconate and aspartate, and increases in alanine, γ‐aminobutyrate, α‐ketoglutarate, malate, pyruvate, and the lactate :pyruvate ratio. Following recovery in air (10 min), increases were observed in glucose (200 per cent), glucose‐6‐phosphate, phosphocreatine and citrate, and there was a fall in fructose‐1, 6‐diphosphale. Similar measurements were made in samples from cerebral cortex, cerebellum, midbrain and medulla. Severe hypoxia produced significant increases in lactate and decreases in glycogen in all areas; γ‐aminobutyrate levels increased in cerebral cortex and brain stem, but not in cerebellum. No significant changes occurred in ATP and only in cerebral cortex was there a significant fall in phosphocreatine. Phosphocreatine, ATP and glycogen were determined by quantitative histochemical methods in four areas of medulla oblongata, including the physiological respiratory centre of the ventromedial portion. After hypoxia, ATP was unchanged throughout and the changes (decreases) in phosphocreatine and glycogen were principally confined to dorsal medulla, notably the lateral zone. Thus there is no evidence that respiratory failure is caused by a ‘power’ failure in the respiratory centre. It is suggested that in extremis a protective mechanism may cause neurons to cease firing before high‐energy phosphate stores have been exhausted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurochemistry Wiley

CEREBRAL CARBOHYDRATE METABOLISM DURING ACUTE HYPOXIA AND RECOVERY

Loading next page...
 
/lp/wiley/cerebral-carbohydrate-metabolism-during-acute-hypoxia-and-recovery-rucFr3mHh8
Publisher
Wiley
Copyright
Copyright © 1972 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0022-3042
eISSN
1471-4159
DOI
10.1111/j.1471-4159.1972.tb01417.x
Publisher site
See Article on Publisher Site

Abstract

Abstract— The levels of ATP, ADP, AMP and phosphocreatine, of four amino acids, and of 11 intermediates of carbohydrate metabolism in mouse brain were determined after: (1) various degrees of hypoxia; (2) hypoxia combined with anaesthesia; and (3) recovery from severe hypoxia. Glycogen decreased and lactate rose markedly in hypoxia, but levels of ATP and phosphocreatine were normal or near normal even when convulsions and respiratory collapse appeared imminent. During 30 s of complete ischaemia (decapitation) the decline in cerebral ATP and phosphocreatine and the increase in AMP was less in mice previously rendered hypoxic than in control mice. From the changes we calculated that the metabolic rate had decreased by 15 per cent or more during 30 min of hypoxia. Hypoxia was also associated with decreases of cerebral 6‐phosphogluconate and aspartate, and increases in alanine, γ‐aminobutyrate, α‐ketoglutarate, malate, pyruvate, and the lactate :pyruvate ratio. Following recovery in air (10 min), increases were observed in glucose (200 per cent), glucose‐6‐phosphate, phosphocreatine and citrate, and there was a fall in fructose‐1, 6‐diphosphale. Similar measurements were made in samples from cerebral cortex, cerebellum, midbrain and medulla. Severe hypoxia produced significant increases in lactate and decreases in glycogen in all areas; γ‐aminobutyrate levels increased in cerebral cortex and brain stem, but not in cerebellum. No significant changes occurred in ATP and only in cerebral cortex was there a significant fall in phosphocreatine. Phosphocreatine, ATP and glycogen were determined by quantitative histochemical methods in four areas of medulla oblongata, including the physiological respiratory centre of the ventromedial portion. After hypoxia, ATP was unchanged throughout and the changes (decreases) in phosphocreatine and glycogen were principally confined to dorsal medulla, notably the lateral zone. Thus there is no evidence that respiratory failure is caused by a ‘power’ failure in the respiratory centre. It is suggested that in extremis a protective mechanism may cause neurons to cease firing before high‐energy phosphate stores have been exhausted.

Journal

Journal of NeurochemistryWiley

Published: Apr 1, 1972

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off