CCAAT/enhancer‐binding protein β overexpression alleviates myocardial remodelling by regulating angiotensin‐converting enzyme‐2 expression in diabetes

CCAAT/enhancer‐binding protein β overexpression alleviates myocardial remodelling by... Diabetic cardiomyopathy, a major cardiac complication, contributes to heart remodelling and heart failure. Our previous study discovered that CCAAT/enhancer‐binding protein β (C/EBPβ), a transcription factor that belongs to a family of basic leucine zipper transcription factors, interacts with the angiotensin‐converting enzyme 2 (ACE2) promoter sequence in other disease models. Here, we aimed to determine the role of C/EBPβ in diabetes and whether ACE2 expression is regulated by C/EBPβ. A type 1 diabetic mouse model was generated by an intraperitoneal injection of streptozotocin. Diabetic mice were injected with a lentivirus expressing either C/EBPβ or sh‐C/EBPβ or treated with valsartan after 12 weeks to observe the effects of C/EBPβ. In vitro, cardiac fibroblasts and cardiomyocytes were treated with high glucose (HG) to investigate the anti‐fibrosis, anti‐apoptosis and regulatory mechanisms of C/EBPβ. C/EBPβ expression was down‐regulated in diabetic mice and HG‐induced cardiac neonatal cells. C/EBPβ overexpression significantly attenuated collagen deposition and cardiomyocyte apoptosis by up‐regulating ACE2 expression. The molecular mechanism involved the binding of C/EBPβ to the ACE2 promoter sequence. Although valsartan, a classic angiotensin receptor blocker, relieved diabetic complications, the up‐regulation of ACE2 expression by C/EBPβ overexpression may exert greater beneficial effects on patients with diabetic cardiomyopathy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cellular and Molecular Medicine Wiley

CCAAT/enhancer‐binding protein β overexpression alleviates myocardial remodelling by regulating angiotensin‐converting enzyme‐2 expression in diabetes

Loading next page...
 
/lp/wiley/ccaat-enhancer-binding-protein-overexpression-alleviates-myocardial-hkOEQCe84A
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine
ISSN
1582-1838
eISSN
1582-4934
D.O.I.
10.1111/jcmm.13406
Publisher site
See Article on Publisher Site

Abstract

Diabetic cardiomyopathy, a major cardiac complication, contributes to heart remodelling and heart failure. Our previous study discovered that CCAAT/enhancer‐binding protein β (C/EBPβ), a transcription factor that belongs to a family of basic leucine zipper transcription factors, interacts with the angiotensin‐converting enzyme 2 (ACE2) promoter sequence in other disease models. Here, we aimed to determine the role of C/EBPβ in diabetes and whether ACE2 expression is regulated by C/EBPβ. A type 1 diabetic mouse model was generated by an intraperitoneal injection of streptozotocin. Diabetic mice were injected with a lentivirus expressing either C/EBPβ or sh‐C/EBPβ or treated with valsartan after 12 weeks to observe the effects of C/EBPβ. In vitro, cardiac fibroblasts and cardiomyocytes were treated with high glucose (HG) to investigate the anti‐fibrosis, anti‐apoptosis and regulatory mechanisms of C/EBPβ. C/EBPβ expression was down‐regulated in diabetic mice and HG‐induced cardiac neonatal cells. C/EBPβ overexpression significantly attenuated collagen deposition and cardiomyocyte apoptosis by up‐regulating ACE2 expression. The molecular mechanism involved the binding of C/EBPβ to the ACE2 promoter sequence. Although valsartan, a classic angiotensin receptor blocker, relieved diabetic complications, the up‐regulation of ACE2 expression by C/EBPβ overexpression may exert greater beneficial effects on patients with diabetic cardiomyopathy.

Journal

Journal of Cellular and Molecular MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off