Carbon emission and sequestration by agricultural land use: a model study for Europe

Carbon emission and sequestration by agricultural land use: a model study for Europe A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008–2012 commitment period were estimated at 0.52 tC ha−1 y−1 in grassland and −0.84 tC ha−1 y−1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha−1 y−1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha−1 y−1 for the incorporating of straw to 1.50 tC ha−1 y−1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha−1 y−1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a −0.05 tC ha−1 y−1 change whereas the rising CO2 concentrations gave a 0.01 tC ha−1 y−1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008–2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Change Biology Wiley

Carbon emission and sequestration by agricultural land use: a model study for Europe

Global Change Biology, Volume 8 (6) – Jan 1, 2002

Loading next page...
 
/lp/wiley/carbon-emission-and-sequestration-by-agricultural-land-use-a-model-PaIeq1imlO
Publisher
Wiley
Copyright
Copyright © 2002 Wiley Subscription Services
ISSN
1354-1013
eISSN
1365-2486
DOI
10.1046/j.1365-2486.2002.00485.x
Publisher site
See Article on Publisher Site

Abstract

A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008–2012 commitment period were estimated at 0.52 tC ha−1 y−1 in grassland and −0.84 tC ha−1 y−1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha−1 y−1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha−1 y−1 for the incorporating of straw to 1.50 tC ha−1 y−1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha−1 y−1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a −0.05 tC ha−1 y−1 change whereas the rising CO2 concentrations gave a 0.01 tC ha−1 y−1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008–2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures.

Journal

Global Change BiologyWiley

Published: Jan 1, 2002

Keywords: ; ; ; ; ;

References

  • Fiber Crops
    Dempsey, JM
  • The Sugar Beet Crop. Science Into Practice
    Elliot, MC; Weston, GD
  • A simple method for generating daily rainfall data
    Geng, S; Penning de Vries, FWT; Supit, I
  • Global Soil Data Products CD‐ROM (IGBP‐DIS). International Geosphere–Biosphere Programme – Data and Information Services

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off