Carbon Dioxide Promotes Dehydrogenation in the Equimolar C2H2‐CO2 Reaction to Synthesize Carbon Nanotubes

Carbon Dioxide Promotes Dehydrogenation in the Equimolar C2H2‐CO2 Reaction to Synthesize Carbon... The equimolar C2H2‐CO2 reaction has shown promise for carbon nanotube (CNT) production at low temperatures and on diverse functional substrate materials; however, the electron‐pushing mechanism of this reaction is not well demonstrated. Here, the role of CO2 is explored experimentally and theoretically. In particular, 13C labeling of CO2 demonstrates that CO2 is not an important C source in CNT growth by thermal catalytic chemical vapor deposition. Consistent with this experimental finding, the adsorption behaviors of C2H2 and CO2 on a graphene‐like lattice via density functional theory calculations reveal that the binding energies of C2H2 are markedly higher than that of CO2, suggesting the former is more likely to incorporate into CNT structure. Further, H‐abstraction by CO2 from the active CNT growth edge would be favored, ultimately forming CO and H2O. These results support that the commonly observed, promoting role of CO2 in CNT growth is due to a CO2‐assisted dehydrogenation mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Small Wiley

Carbon Dioxide Promotes Dehydrogenation in the Equimolar C2H2‐CO2 Reaction to Synthesize Carbon Nanotubes

Loading next page...
 
/lp/wiley/carbon-dioxide-promotes-dehydrogenation-in-the-equimolar-c2h2-co2-7knRhQx8eF
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1613-6810
eISSN
1613-6829
D.O.I.
10.1002/smll.201703482
Publisher site
See Article on Publisher Site

Abstract

The equimolar C2H2‐CO2 reaction has shown promise for carbon nanotube (CNT) production at low temperatures and on diverse functional substrate materials; however, the electron‐pushing mechanism of this reaction is not well demonstrated. Here, the role of CO2 is explored experimentally and theoretically. In particular, 13C labeling of CO2 demonstrates that CO2 is not an important C source in CNT growth by thermal catalytic chemical vapor deposition. Consistent with this experimental finding, the adsorption behaviors of C2H2 and CO2 on a graphene‐like lattice via density functional theory calculations reveal that the binding energies of C2H2 are markedly higher than that of CO2, suggesting the former is more likely to incorporate into CNT structure. Further, H‐abstraction by CO2 from the active CNT growth edge would be favored, ultimately forming CO and H2O. These results support that the commonly observed, promoting role of CO2 in CNT growth is due to a CO2‐assisted dehydrogenation mechanism.

Journal

SmallWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off