Carbon Dioxide Promotes Dehydrogenation in the Equimolar C2H2‐CO2 Reaction to Synthesize Carbon Nanotubes

Carbon Dioxide Promotes Dehydrogenation in the Equimolar C2H2‐CO2 Reaction to Synthesize Carbon... The equimolar C2H2‐CO2 reaction has shown promise for carbon nanotube (CNT) production at low temperatures and on diverse functional substrate materials; however, the electron‐pushing mechanism of this reaction is not well demonstrated. Here, the role of CO2 is explored experimentally and theoretically. In particular, 13C labeling of CO2 demonstrates that CO2 is not an important C source in CNT growth by thermal catalytic chemical vapor deposition. Consistent with this experimental finding, the adsorption behaviors of C2H2 and CO2 on a graphene‐like lattice via density functional theory calculations reveal that the binding energies of C2H2 are markedly higher than that of CO2, suggesting the former is more likely to incorporate into CNT structure. Further, H‐abstraction by CO2 from the active CNT growth edge would be favored, ultimately forming CO and H2O. These results support that the commonly observed, promoting role of CO2 in CNT growth is due to a CO2‐assisted dehydrogenation mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Small Wiley

Carbon Dioxide Promotes Dehydrogenation in the Equimolar C2H2‐CO2 Reaction to Synthesize Carbon Nanotubes

Loading next page...
 
/lp/wiley/carbon-dioxide-promotes-dehydrogenation-in-the-equimolar-c2h2-co2-7knRhQx8eF
Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1613-6810
eISSN
1613-6829
D.O.I.
10.1002/smll.201703482
Publisher site
See Article on Publisher Site

Abstract

The equimolar C2H2‐CO2 reaction has shown promise for carbon nanotube (CNT) production at low temperatures and on diverse functional substrate materials; however, the electron‐pushing mechanism of this reaction is not well demonstrated. Here, the role of CO2 is explored experimentally and theoretically. In particular, 13C labeling of CO2 demonstrates that CO2 is not an important C source in CNT growth by thermal catalytic chemical vapor deposition. Consistent with this experimental finding, the adsorption behaviors of C2H2 and CO2 on a graphene‐like lattice via density functional theory calculations reveal that the binding energies of C2H2 are markedly higher than that of CO2, suggesting the former is more likely to incorporate into CNT structure. Further, H‐abstraction by CO2 from the active CNT growth edge would be favored, ultimately forming CO and H2O. These results support that the commonly observed, promoting role of CO2 in CNT growth is due to a CO2‐assisted dehydrogenation mechanism.

Journal

SmallWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off