Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model

Capturing the influence of groundwater dynamics on land surface processes using an integrated,... The influence of groundwater dynamics on the energy balance at the land surface is studied using an integrated, distributed watershed modeling platform. This model includes the mass and energy balance at the land surface; three‐dimensional variably saturated subsurface flow; explicit representation of the water table; and overland flow. The model is applied to the Little Washita watershed in Central Oklahoma, USA and compared to runoff, soil moisture and energy flux observations. The connection between groundwater dynamics and the land surface energy balance is studied using a variety of conventional and spatial statistical measures. For a number of energy variables a strong interconnection is demonstrated with water table depth. This connection varies seasonally and spatially depending on the spatial composition of water table depth. A theoretical critical water table depth range is presented where a strong sensitivity between groundwater and land‐surface processes may be observed. For this particular watershed, a critical depth range is established between 1 and 5 m in which the land surface energy budget is most sensitive to groundwater storage. Finally, concrete recommendations are put forth to characterize this interconnection in the field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model

Loading next page...
 
/lp/wiley/capturing-the-influence-of-groundwater-dynamics-on-land-surface-Qfi8JfC14Z
Publisher
Wiley
Copyright
Copyright © 2008 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/2007WR006004
Publisher site
See Article on Publisher Site

Abstract

The influence of groundwater dynamics on the energy balance at the land surface is studied using an integrated, distributed watershed modeling platform. This model includes the mass and energy balance at the land surface; three‐dimensional variably saturated subsurface flow; explicit representation of the water table; and overland flow. The model is applied to the Little Washita watershed in Central Oklahoma, USA and compared to runoff, soil moisture and energy flux observations. The connection between groundwater dynamics and the land surface energy balance is studied using a variety of conventional and spatial statistical measures. For a number of energy variables a strong interconnection is demonstrated with water table depth. This connection varies seasonally and spatially depending on the spatial composition of water table depth. A theoretical critical water table depth range is presented where a strong sensitivity between groundwater and land‐surface processes may be observed. For this particular watershed, a critical depth range is established between 1 and 5 m in which the land surface energy budget is most sensitive to groundwater storage. Finally, concrete recommendations are put forth to characterize this interconnection in the field.

Journal

Water Resources ResearchWiley

Published: Feb 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off