Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study

Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in... The nucleus accumbens (NAc) represents a critical site for the rewarding properties of diverse classes of drugs of abuse. Glutamatergic afferents to the NAc are involved in the actions of psychostimulants and opioids, while the potentiation of dopaminergic neurotransmission in the NAc is a common feature of abused drugs, including cannabinoids. Cannabinoid receptors (CB1) are densely expressed in regions that provide excitatory innervation to the NAc, such as the amygdala, the cortex and the hippocampus. Recent in vitro evidence suggests that indeed cannabinoids modulate glutamatergic synapses in the NAc. In this study we recorded extracellularly from neurons in the shell of the NAc which responded to the stimulation of the baso‐lateral amygdala (BLA) or the medial prefrontal cortex (PFC) in urethane anaesthetized rats. BLA or PFC stimulation induced generation of action potentials in NAc neurons. This excitatory effect was strongly inhibited by the synthetic cannabinoid agonists WIN 55212,2 (0.062–0.25 mg/kg, i.v.) and HU‐210 (0.125–0.25 mg/kg, i.v.) or the psychoactive principle of Cannabis delta(9)‐tetrahydrocannabinol (1.0 mg/kg, i.v.). Neither the D1 or D2 dopamine receptor antagonists (SCH23390 0.5–1.0 mg/kg, sulpiride 5–10 mg/kg, i.v.) or the opioid antagonist naloxone (1.0 mg/kg, i.v.) were able to reverse the action of cannabinoids, while the selective CB1 receptor antagonist/reverse agonist SR141716A (0.5 mg/kg, i.v.) fully suppressed the action of cannabinoid agonists, whereas per se had no significant effect. These results provide evidence that cannabinoids, in common with other drugs of abuse, in vivo strongly inhibit the excitability of neurons in the shell of the NAc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Neuroscience Wiley

Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study

Loading next page...
 
/lp/wiley/cannabinoids-inhibit-excitatory-inputs-to-neurons-in-the-shell-of-the-HB7gF28iuU
Publisher
Wiley
Copyright
Copyright © 2002 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-816X
eISSN
1460-9568
D.O.I.
10.1046/j.1460-9568.2002.02019.x
Publisher site
See Article on Publisher Site

Abstract

The nucleus accumbens (NAc) represents a critical site for the rewarding properties of diverse classes of drugs of abuse. Glutamatergic afferents to the NAc are involved in the actions of psychostimulants and opioids, while the potentiation of dopaminergic neurotransmission in the NAc is a common feature of abused drugs, including cannabinoids. Cannabinoid receptors (CB1) are densely expressed in regions that provide excitatory innervation to the NAc, such as the amygdala, the cortex and the hippocampus. Recent in vitro evidence suggests that indeed cannabinoids modulate glutamatergic synapses in the NAc. In this study we recorded extracellularly from neurons in the shell of the NAc which responded to the stimulation of the baso‐lateral amygdala (BLA) or the medial prefrontal cortex (PFC) in urethane anaesthetized rats. BLA or PFC stimulation induced generation of action potentials in NAc neurons. This excitatory effect was strongly inhibited by the synthetic cannabinoid agonists WIN 55212,2 (0.062–0.25 mg/kg, i.v.) and HU‐210 (0.125–0.25 mg/kg, i.v.) or the psychoactive principle of Cannabis delta(9)‐tetrahydrocannabinol (1.0 mg/kg, i.v.). Neither the D1 or D2 dopamine receptor antagonists (SCH23390 0.5–1.0 mg/kg, sulpiride 5–10 mg/kg, i.v.) or the opioid antagonist naloxone (1.0 mg/kg, i.v.) were able to reverse the action of cannabinoids, while the selective CB1 receptor antagonist/reverse agonist SR141716A (0.5 mg/kg, i.v.) fully suppressed the action of cannabinoid agonists, whereas per se had no significant effect. These results provide evidence that cannabinoids, in common with other drugs of abuse, in vivo strongly inhibit the excitability of neurons in the shell of the NAc.

Journal

European Journal of NeuroscienceWiley

Published: Jun 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off