Can Large Oceanic Vortices Be Stable?

Can Large Oceanic Vortices Be Stable? Observations show that radii of oceanic eddies often exceed the Rossby radius of deformation, whereas theoretical studies suggest that such vortices should be unstable. The present paper resolves this paradox by presenting a wide class of large geostrophic vortices with a sign‐definite gradient of potential vorticity (which makes them stable), in an ocean where the density gradient is mostly confined to a thin near‐surface layer (which is indeed the case in the real ocean). The condition of a thin “active” layer is what makes the present work different from the previous theoretical studies and is of utmost importance. It turns out that without it, the joint requirement that a vortex be large and have a sign‐definite potential vorticity gradient trivializes the problem by eliminating all vortices except nearly barotropic ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

Can Large Oceanic Vortices Be Stable?

Loading next page...
 
/lp/wiley/can-large-oceanic-vortices-be-stable-MhiJw49Mhr
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
D.O.I.
10.1002/2017GL076939
Publisher site
See Article on Publisher Site

Abstract

Observations show that radii of oceanic eddies often exceed the Rossby radius of deformation, whereas theoretical studies suggest that such vortices should be unstable. The present paper resolves this paradox by presenting a wide class of large geostrophic vortices with a sign‐definite gradient of potential vorticity (which makes them stable), in an ocean where the density gradient is mostly confined to a thin near‐surface layer (which is indeed the case in the real ocean). The condition of a thin “active” layer is what makes the present work different from the previous theoretical studies and is of utmost importance. It turns out that without it, the joint requirement that a vortex be large and have a sign‐definite potential vorticity gradient trivializes the problem by eliminating all vortices except nearly barotropic ones.

Journal

Geophysical Research LettersWiley

Published: Jan 28, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off