Can improvement in photosynthesis increase crop yields?

Can improvement in photosynthesis increase crop yields? ABSTRACT The yield potential (Yp) of a grain crop is the seed mass per unit ground area obtained under optimum growing conditions without weeds, pests and diseases. It is determined by the product of the available light energy and by the genetically determined properties: efficiency of light capture (ɛi), the efficiency of conversion of the intercepted light into biomass (ɛc) and the proportion of biomass partitioned into grain (η). Plant breeding brings η and ɛi close to their theoretical maxima, leaving ɛc, primarily determined by photosynthesis, as the only remaining major prospect for improving Yp. Leaf photosynthetic rate, however, is poorly correlated with yield when different genotypes of a crop species are compared. This led to the viewpoint that improvement of leaf photosynthesis has little value for improving Yp. By contrast, the many recent experiments that compare the growth of a genotype in current and future projected elevated (CO2) environments show that increase in leaf photosynthesis is closely associated with similar increases in yield. Are there opportunities to achieve similar increases by genetic manipulation? Six potential routes of increasing ɛc by improving photosynthetic efficiency were explored, ranging from altered canopy architecture to improved regeneration of the acceptor molecule for CO2. Collectively, these changes could improve ɛc and, therefore, Yp by c. 50%. Because some changes could be achieved by transgenic technology, the time of the development of commercial cultivars could be considerably less than by conventional breeding and potentially, within 10–15 years. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell & Environment Wiley

Can improvement in photosynthesis increase crop yields?

Loading next page...
 
/lp/wiley/can-improvement-in-photosynthesis-increase-crop-yields-4ooHSZf0s0
Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0140-7791
eISSN
1365-3040
D.O.I.
10.1111/j.1365-3040.2005.01493.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT The yield potential (Yp) of a grain crop is the seed mass per unit ground area obtained under optimum growing conditions without weeds, pests and diseases. It is determined by the product of the available light energy and by the genetically determined properties: efficiency of light capture (ɛi), the efficiency of conversion of the intercepted light into biomass (ɛc) and the proportion of biomass partitioned into grain (η). Plant breeding brings η and ɛi close to their theoretical maxima, leaving ɛc, primarily determined by photosynthesis, as the only remaining major prospect for improving Yp. Leaf photosynthetic rate, however, is poorly correlated with yield when different genotypes of a crop species are compared. This led to the viewpoint that improvement of leaf photosynthesis has little value for improving Yp. By contrast, the many recent experiments that compare the growth of a genotype in current and future projected elevated (CO2) environments show that increase in leaf photosynthesis is closely associated with similar increases in yield. Are there opportunities to achieve similar increases by genetic manipulation? Six potential routes of increasing ɛc by improving photosynthetic efficiency were explored, ranging from altered canopy architecture to improved regeneration of the acceptor molecule for CO2. Collectively, these changes could improve ɛc and, therefore, Yp by c. 50%. Because some changes could be achieved by transgenic technology, the time of the development of commercial cultivars could be considerably less than by conventional breeding and potentially, within 10–15 years.

Journal

Plant Cell & EnvironmentWiley

Published: Mar 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off