Blends of polylactic acid with thermoplastic copolyester elastomer: Effect of functionalized terpolymer type on reactive toughening

Blends of polylactic acid with thermoplastic copolyester elastomer: Effect of functionalized... This study is an attempt to explore the effectiveness of thermoplastic copolyester elastomer (TPCE) as a toughening agent for improving the impact strength of PLA. Biobased Hytrel® thermoplastic copolyester of polyether glycol and polybutylene terephthalate was selected as the TPCE of choice for this study. Blends of PLA/Hytrel at varying weight ratios were prepared using extrusion followed by injection molding technique. Optimal synergies of two polymers were found in the PLA/Hytrel (70/30) blend, showing impact strength of 234 J/m, a sixfold increase compared to neat PLA. In order to obtain further enhancement in toughness, different functionalized terpolymers were added to accomplish reactive compatibilization. A series of functionalized terpolymers, ethylene methyle acrylate‐glycidyl methacrylate (EMA‐GMA), ethylene butyl acrylate‐glycidyl methacrylate (EBA‐GMA), ethylene methyl acrylate‐maleic anhydride (EMA‐MaH), and ethylene butyl acrylate‐maleic anhydride (EBA‐MaH) were selected. Comparing PLA ternary blends with different terpolymers, GMA containing terpolymers showed better impact toughness compared to MaH terpolymer blends. Unique fracture surface morphology showing debonding cavitation and massive shear yielding in the ternary blends containing EMA‐GMA resulted in super toughened blends. Highest zero shear viscosity and storage modulus was also observed for ternary blends with EMA‐GMA. Under the processing conditions and blend ratio investigated, EMA‐GMA showed better efficiency in improving the toughness of the PLA blends. POLYM. ENG. SCI., 58:280–290, 2018. © 2017 Society of Plastics Engineers http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Engineering & Science Wiley

Blends of polylactic acid with thermoplastic copolyester elastomer: Effect of functionalized terpolymer type on reactive toughening

Loading next page...
 
/lp/wiley/blends-of-polylactic-acid-with-thermoplastic-copolyester-elastomer-0E02OytKiK
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Society of Plastics Engineers
ISSN
0032-3888
eISSN
1548-2634
D.O.I.
10.1002/pen.24566
Publisher site
See Article on Publisher Site

Abstract

This study is an attempt to explore the effectiveness of thermoplastic copolyester elastomer (TPCE) as a toughening agent for improving the impact strength of PLA. Biobased Hytrel® thermoplastic copolyester of polyether glycol and polybutylene terephthalate was selected as the TPCE of choice for this study. Blends of PLA/Hytrel at varying weight ratios were prepared using extrusion followed by injection molding technique. Optimal synergies of two polymers were found in the PLA/Hytrel (70/30) blend, showing impact strength of 234 J/m, a sixfold increase compared to neat PLA. In order to obtain further enhancement in toughness, different functionalized terpolymers were added to accomplish reactive compatibilization. A series of functionalized terpolymers, ethylene methyle acrylate‐glycidyl methacrylate (EMA‐GMA), ethylene butyl acrylate‐glycidyl methacrylate (EBA‐GMA), ethylene methyl acrylate‐maleic anhydride (EMA‐MaH), and ethylene butyl acrylate‐maleic anhydride (EBA‐MaH) were selected. Comparing PLA ternary blends with different terpolymers, GMA containing terpolymers showed better impact toughness compared to MaH terpolymer blends. Unique fracture surface morphology showing debonding cavitation and massive shear yielding in the ternary blends containing EMA‐GMA resulted in super toughened blends. Highest zero shear viscosity and storage modulus was also observed for ternary blends with EMA‐GMA. Under the processing conditions and blend ratio investigated, EMA‐GMA showed better efficiency in improving the toughness of the PLA blends. POLYM. ENG. SCI., 58:280–290, 2018. © 2017 Society of Plastics Engineers

Journal

Polymer Engineering & ScienceWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial