“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

BIX ‐01294 treatment blocks cell proliferation, migration and contractility in ovine foetal pulmonary arterial smooth muscle cells

Objective Recent studies have indicated a role of epigenetic phenomena in pathogenesis of pulmonary hypertension, but in foetal pulmonary artery smooth muscle cell (PASMC) proliferation this is still largely unknown. G9a is a key enzyme for histone H3 dimethylation at position lysine‐9. In this study, we have investigated the function of G9a in ovine foetal PASMC proliferation, migration and contractility. Material and methods Cell proliferation was measured by cell counting and BrdU incorporation assay and cell cycle analysis was performed by flow cytometry. Expression of cell cycle‐related genes was determined by real‐time PCR and the wound‐healing scratch assay was used to measure cell migration. A gel contraction assay was used to determine contractility of foetal PASMCs. Global DNA methylation was measured by liquid chromatography‐mass spectroscopy. Results Inhibition of G9a by its inhibitor BIX‐01294 reduced proliferation of foetal PASMCs and induced cell cycle arrest in G1 phase. This was accompanied by increased p21 expression, but not p53 and other cell cycle‐related genes. Treatment of foetal PASMCs with BIX‐01294 inhibited platelet‐derived growth factor‐induced cell proliferation and migration. Contractility of foetal PASMCs was also markedly inhibited by BIX‐01294. Expression of calponin and ROCK‐II proteins was reduced by BIX‐01294 in a dose‐dependent manner and BIX‐01294 significantly increased global methylation level in the foetal PASMCs. Conclusion Our results demonstrate for the first time that histone lysine methylation is involved in cell proliferation, migration, contractility and global DNA methylation in foetal PASMCs. Further understanding of this mechanism may provide insight into proliferative vascular disease in the lungs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell Proliferation Wiley

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually