BiOBr‐Ag8SnS6 heterostructured nanocomposite photocatalysts: Synthesis, characterization, and photocatalytic application

BiOBr‐Ag8SnS6 heterostructured nanocomposite photocatalysts: Synthesis, characterization, and... BiOBr‐Ag8SnS6 heterostructured nanocomposite photocatalysts have been synthesized by chemical coprecipitation method in the presence of ethylene glycol solvent at a temperature of 100 °C for 4 hr. The synthesized BiOBr‐Ag8SnS6 heterostructured composites were characterized by X‐ray diffraction, transmission electron microscopy, ultraviolet–visible near‐infrared spectroscopy, photoluminescence spectroscopy, and Brunauer–Emmett–Teller surface area measurement. X‐ray diffraction pattern of BiOBr‐Ag8SnS6 heterostructures showed the peaks corresponding to tetragonal structure of BiOBr and orthorhombic structure of Ag8SnS6 nanoparticles, which indicated that they exist in biphasic form in the composite. Photoluminescence studies showed that the BiOBr‐Ag8SnS6‐1 composite possesses the lowest recombination rate of e−–h+ pairs. Brunauer–Emmett–Teller surface area of BiOBr, Ag8SnS6 nanoparticles, BiOBr‐Ag8SnS6‐1, and BiOBr‐Ag8SnS6‐2 was found to be 0.05, 2.35, 1.88, and 1.0 m2/g, respectively. BiOBr‐Ag8SnS6 heterostructured nanocomposite photocatalysts exhibited robust photodegradation towards degradation of indigo carmine dye than that of single‐phase BiOBr and Ag8SnS6 nanoparticles under sunlight irradiation. The enhanced photoactivity could be ascribed to heterostructure effect between BiOBr and Ag8SnS6 nanoparticles, an improved visible light absorption and the separation and easy transfer of photogenerated electrons and holes, across the interface of BiOBr‐Ag8SnS6. The radical scavenger experiments showed that photogenerated holes and superoxide radicals were the main active species involved in the photodegradation process of indigo carmine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Asia-Pacific Journal of Chemical Engineering Wiley

BiOBr‐Ag8SnS6 heterostructured nanocomposite photocatalysts: Synthesis, characterization, and photocatalytic application

Loading next page...
 
/lp/wiley/biobr-ag8sns6-heterostructured-nanocomposite-photocatalysts-synthesis-0wjEXI1S5X
Publisher
Wiley
Copyright
Copyright © 2018 Curtin University of Technology and John Wiley & Sons, Ltd.
ISSN
1932-2135
eISSN
1932-2143
D.O.I.
10.1002/apj.2182
Publisher site
See Article on Publisher Site

Abstract

BiOBr‐Ag8SnS6 heterostructured nanocomposite photocatalysts have been synthesized by chemical coprecipitation method in the presence of ethylene glycol solvent at a temperature of 100 °C for 4 hr. The synthesized BiOBr‐Ag8SnS6 heterostructured composites were characterized by X‐ray diffraction, transmission electron microscopy, ultraviolet–visible near‐infrared spectroscopy, photoluminescence spectroscopy, and Brunauer–Emmett–Teller surface area measurement. X‐ray diffraction pattern of BiOBr‐Ag8SnS6 heterostructures showed the peaks corresponding to tetragonal structure of BiOBr and orthorhombic structure of Ag8SnS6 nanoparticles, which indicated that they exist in biphasic form in the composite. Photoluminescence studies showed that the BiOBr‐Ag8SnS6‐1 composite possesses the lowest recombination rate of e−–h+ pairs. Brunauer–Emmett–Teller surface area of BiOBr, Ag8SnS6 nanoparticles, BiOBr‐Ag8SnS6‐1, and BiOBr‐Ag8SnS6‐2 was found to be 0.05, 2.35, 1.88, and 1.0 m2/g, respectively. BiOBr‐Ag8SnS6 heterostructured nanocomposite photocatalysts exhibited robust photodegradation towards degradation of indigo carmine dye than that of single‐phase BiOBr and Ag8SnS6 nanoparticles under sunlight irradiation. The enhanced photoactivity could be ascribed to heterostructure effect between BiOBr and Ag8SnS6 nanoparticles, an improved visible light absorption and the separation and easy transfer of photogenerated electrons and holes, across the interface of BiOBr‐Ag8SnS6. The radical scavenger experiments showed that photogenerated holes and superoxide radicals were the main active species involved in the photodegradation process of indigo carmine.

Journal

Asia-Pacific Journal of Chemical EngineeringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off