Balancing exploration and exploitation in memetic algorithms: A learning automata approach

Balancing exploration and exploitation in memetic algorithms: A learning automata approach One of the problems with traditional genetic algorithms (GAs) is premature convergence, which makes them incapable of finding good solutions to the problem. The memetic algorithm (MA) is an extension of the GA. It uses a local search method to either accelerate the discovery of good solutions, for which evolution alone would take too long to discover, or reach solutions that would otherwise be unreachable by evolution or a local search method alone. In this paper, we introduce a new algorithm based on learning automata (LAs) and an MA, and we refer to it as LA‐MA. This algorithm is composed of 2 parts: a genetic section and a memetic section. Evolution is performed in the genetic section, and local search is performed in the memetic section. The basic idea of LA‐MA is to use LAs during the process of searching for solutions in order to create a balance between exploration performed by evolution and exploitation performed by local search. For this purpose, we present a criterion for the estimation of success of the local search at each generation. This criterion is used to calculate the probability of applying the local search to each chromosome. We show that in practice, the proposed probabilistic measure can be estimated reliably. On the basis of the relationship between the genetic section and the memetic section, 3 versions of LA‐MA are introduced. LLA‐MA behaves according to the Lamarckian learning model, BLA‐MA behaves according to the Baldwinian learning model, and HLA‐MA behaves according to both the Baldwinian and Lamarckian learning models. To evaluate the efficiency of these algorithms, they have been used to solve the graph isomorphism problem. The results of computer experimentations have shown that all the proposed algorithms outperform the existing algorithms in terms of quality of solution and rate of convergence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Intelligence Wiley

Balancing exploration and exploitation in memetic algorithms: A learning automata approach

Loading next page...
 
/lp/wiley/balancing-exploration-and-exploitation-in-memetic-algorithms-a-fSLBCkDWvQ
Publisher
Wiley
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0824-7935
eISSN
1467-8640
D.O.I.
10.1111/coin.12148
Publisher site
See Article on Publisher Site

Abstract

One of the problems with traditional genetic algorithms (GAs) is premature convergence, which makes them incapable of finding good solutions to the problem. The memetic algorithm (MA) is an extension of the GA. It uses a local search method to either accelerate the discovery of good solutions, for which evolution alone would take too long to discover, or reach solutions that would otherwise be unreachable by evolution or a local search method alone. In this paper, we introduce a new algorithm based on learning automata (LAs) and an MA, and we refer to it as LA‐MA. This algorithm is composed of 2 parts: a genetic section and a memetic section. Evolution is performed in the genetic section, and local search is performed in the memetic section. The basic idea of LA‐MA is to use LAs during the process of searching for solutions in order to create a balance between exploration performed by evolution and exploitation performed by local search. For this purpose, we present a criterion for the estimation of success of the local search at each generation. This criterion is used to calculate the probability of applying the local search to each chromosome. We show that in practice, the proposed probabilistic measure can be estimated reliably. On the basis of the relationship between the genetic section and the memetic section, 3 versions of LA‐MA are introduced. LLA‐MA behaves according to the Lamarckian learning model, BLA‐MA behaves according to the Baldwinian learning model, and HLA‐MA behaves according to both the Baldwinian and Lamarckian learning models. To evaluate the efficiency of these algorithms, they have been used to solve the graph isomorphism problem. The results of computer experimentations have shown that all the proposed algorithms outperform the existing algorithms in terms of quality of solution and rate of convergence.

Journal

Computational IntelligenceWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off