Bacterial conjugation: a two‐step mechanism for DNA transport

Bacterial conjugation: a two‐step mechanism for DNA transport Summary Bacterial conjugation is a promiscuous DNA transport mechanism. Conjugative plasmids transfer themselves between most bacteria, thus being one of the main causal agents of the spread of antibiotic resistance among pathogenic bacteria. Moreover, DNA can be transferred conjugatively into eukaryotic host cells. In this review, we aim to address several basic questions regarding the DNA transfer mechanism. Conjugation can be visualized as a DNA rolling‐circle replication (RCR) system linked to a type IV secretion system (T4SS), the latter being macromolecular transporters widely involved in pathogenic mechanisms. The scheme ‘replication + secretion’ suggests how the mechanism would work on the DNA substrate and at the bacterial membrane. But, how do these two parts come into contact? Furthermore, how is the DNA transported? T4SS are known to be involved in protein secretion in different organisms, but DNA is a very different macromolecule. The so‐called coupling proteins could be the answer to both questions by performing a dual role in conjugation: coupling the two main components of the machinery (RCR and T4SS) and actively mediating DNA transport. We postulate that the T4SS is responsible for transport of the pilot protein (the relaxase) to the recipient. The DNA that is covalently linked to it is initially transported in a passive manner, trailing on the relaxase. We speculate that the pilus appendage could work as a needle, thrusting the substrate proteins to cross one or several membrane barriers into the recipient cytoplasm. This is the first step in conjugation. The second step is the active pumping of the DNA to the recipient, using the already available T4SS transport conduit. It is proposed that this second step is catalysed by the coupling proteins. Our ‘shoot and pump’ model solves the protein–DNA transport paradox of T4SS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Microbiology Wiley

Bacterial conjugation: a two‐step mechanism for DNA transport

Loading next page...
 
/lp/wiley/bacterial-conjugation-a-two-step-mechanism-for-dna-transport-oF0U5154vb
Publisher
Wiley
Copyright
Copyright © 2002 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0950-382X
eISSN
1365-2958
DOI
10.1046/j.1365-2958.2002.03014.x
Publisher site
See Article on Publisher Site

Abstract

Summary Bacterial conjugation is a promiscuous DNA transport mechanism. Conjugative plasmids transfer themselves between most bacteria, thus being one of the main causal agents of the spread of antibiotic resistance among pathogenic bacteria. Moreover, DNA can be transferred conjugatively into eukaryotic host cells. In this review, we aim to address several basic questions regarding the DNA transfer mechanism. Conjugation can be visualized as a DNA rolling‐circle replication (RCR) system linked to a type IV secretion system (T4SS), the latter being macromolecular transporters widely involved in pathogenic mechanisms. The scheme ‘replication + secretion’ suggests how the mechanism would work on the DNA substrate and at the bacterial membrane. But, how do these two parts come into contact? Furthermore, how is the DNA transported? T4SS are known to be involved in protein secretion in different organisms, but DNA is a very different macromolecule. The so‐called coupling proteins could be the answer to both questions by performing a dual role in conjugation: coupling the two main components of the machinery (RCR and T4SS) and actively mediating DNA transport. We postulate that the T4SS is responsible for transport of the pilot protein (the relaxase) to the recipient. The DNA that is covalently linked to it is initially transported in a passive manner, trailing on the relaxase. We speculate that the pilus appendage could work as a needle, thrusting the substrate proteins to cross one or several membrane barriers into the recipient cytoplasm. This is the first step in conjugation. The second step is the active pumping of the DNA to the recipient, using the already available T4SS transport conduit. It is proposed that this second step is catalysed by the coupling proteins. Our ‘shoot and pump’ model solves the protein–DNA transport paradox of T4SS.

Journal

Molecular MicrobiologyWiley

Published: Jul 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off