Backscattered electron imaging and electron backscattered diffraction in the study of bacterial attachment to titanium alloy structure

Backscattered electron imaging and electron backscattered diffraction in the study of bacterial... The application of secondary electron (SE) imaging, backscattered electron imaging (BSE) and electron backscattered diffraction (EBSD) was investigated in this work to study the bacterial adhesion and proliferation on a commercially pure titanium (cp Ti) and a Ti6Al4V alloy (Ti 64) with respect to substrate microstructure and chemical composition. Adherence of Gram‐positive Staphylococcus epidermidis 11047 and Streptococcus sanguinis GW2, and Gram‐negative Serratia sp. NCIMB 40259 and Escherichia coli 10418 was compared on cp Ti, Ti 64, pure aluminium (Al) and vanadium (V). The substrate microstructure and the bacterial distribution on these metals were characterised using SE, BSE and EBSD imaging. It was observed that titanium alloy‐phase structure, grain boundaries and grain orientation did not influence bacterial adherence or proliferation at microscale. Adherence of all four strains was similar on cp Ti and Ti 64 surfaces whilst inhibited on pure Al. This work establishes a nondestructive and straight‐forward statistical method to analyse the relationship between microbial distribution and metal alloy structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Microscopy Wiley

Backscattered electron imaging and electron backscattered diffraction in the study of bacterial attachment to titanium alloy structure

Loading next page...
 
/lp/wiley/backscattered-electron-imaging-and-electron-backscattered-diffraction-x6joIycIbm
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Journal compilation © 2018 Royal Microscopical Society
ISSN
0022-2720
eISSN
1365-2818
D.O.I.
10.1111/jmi.12649
Publisher site
See Article on Publisher Site

Abstract

The application of secondary electron (SE) imaging, backscattered electron imaging (BSE) and electron backscattered diffraction (EBSD) was investigated in this work to study the bacterial adhesion and proliferation on a commercially pure titanium (cp Ti) and a Ti6Al4V alloy (Ti 64) with respect to substrate microstructure and chemical composition. Adherence of Gram‐positive Staphylococcus epidermidis 11047 and Streptococcus sanguinis GW2, and Gram‐negative Serratia sp. NCIMB 40259 and Escherichia coli 10418 was compared on cp Ti, Ti 64, pure aluminium (Al) and vanadium (V). The substrate microstructure and the bacterial distribution on these metals were characterised using SE, BSE and EBSD imaging. It was observed that titanium alloy‐phase structure, grain boundaries and grain orientation did not influence bacterial adherence or proliferation at microscale. Adherence of all four strains was similar on cp Ti and Ti 64 surfaces whilst inhibited on pure Al. This work establishes a nondestructive and straight‐forward statistical method to analyse the relationship between microbial distribution and metal alloy structure.

Journal

Journal of MicroscopyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial