Axial base‐controlled catalytic activity, oxidative stability and product selectivity of water‐insoluble manganese and iron porphyrins for oxidation of styrenes in water under green conditions

Axial base‐controlled catalytic activity, oxidative stability and product selectivity of... A series of water‐insoluble iron(III) and manganese(III) porphyrins, FeT(2‐CH3)PPCl, FeT(4‐OCH3)PPCl, FeT(2‐Cl)PPCl, FeTPPCl, MnT(2‐CH3)PPOAc, MnT(4‐OCH3)PPOAc, MnT(2‐Cl)PPOAc and MnTPPOAc, in the presence of imidazole (ImH), F−, Cl−, Br− and acetate were used as catalysts for the aqueous‐phase heterogeneous oxidation of styrenes to the corresponding epoxides and aldehydes with sodium periodate. Also, the effect of various reaction parameters such as reaction time, molar ratio of catalyst to axial base, type of axial base, molar ratio of olefin to oxidant and nature of metal centre on the activity and oxidative stability of the catalysts and the product selectivity was investigated. Higher catalytic activities were found for the iron complexes. Interestingly, the selectivity towards the formation of epoxide and aldehyde (or acetophenone) was significantly influenced by the type of axial base. Furthermore, Br− and ImH were found to be the most efficient co‐catalysts for the oxidation of olefins performed in the presence of the manganese and iron porphyrins, respectively. The optimized molar ratio of catalyst to axial base was different for various axial bases. Also, the order of co‐catalyst activity of the axial bases obtained in aqueous medium was different from that reported for organic solvents. The use of a convenient axial base under optimum reaction catalyst to co‐catalyst molar ratio in the presence of the manganese porphyrin gave the oxidative products with a conversion of ca 100% in a reaction time of less than 3 h. However, the catalytic activity of the iron porphyrins could not be effectively improved by increasing the catalyst to co‐catalyst molar ratio. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Axial base‐controlled catalytic activity, oxidative stability and product selectivity of water‐insoluble manganese and iron porphyrins for oxidation of styrenes in water under green conditions

Loading next page...
 
/lp/wiley/axial-base-controlled-catalytic-activity-oxidative-stability-and-B9z70FtIGD
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4117
Publisher site
See Article on Publisher Site

Abstract

A series of water‐insoluble iron(III) and manganese(III) porphyrins, FeT(2‐CH3)PPCl, FeT(4‐OCH3)PPCl, FeT(2‐Cl)PPCl, FeTPPCl, MnT(2‐CH3)PPOAc, MnT(4‐OCH3)PPOAc, MnT(2‐Cl)PPOAc and MnTPPOAc, in the presence of imidazole (ImH), F−, Cl−, Br− and acetate were used as catalysts for the aqueous‐phase heterogeneous oxidation of styrenes to the corresponding epoxides and aldehydes with sodium periodate. Also, the effect of various reaction parameters such as reaction time, molar ratio of catalyst to axial base, type of axial base, molar ratio of olefin to oxidant and nature of metal centre on the activity and oxidative stability of the catalysts and the product selectivity was investigated. Higher catalytic activities were found for the iron complexes. Interestingly, the selectivity towards the formation of epoxide and aldehyde (or acetophenone) was significantly influenced by the type of axial base. Furthermore, Br− and ImH were found to be the most efficient co‐catalysts for the oxidation of olefins performed in the presence of the manganese and iron porphyrins, respectively. The optimized molar ratio of catalyst to axial base was different for various axial bases. Also, the order of co‐catalyst activity of the axial bases obtained in aqueous medium was different from that reported for organic solvents. The use of a convenient axial base under optimum reaction catalyst to co‐catalyst molar ratio in the presence of the manganese porphyrin gave the oxidative products with a conversion of ca 100% in a reaction time of less than 3 h. However, the catalytic activity of the iron porphyrins could not be effectively improved by increasing the catalyst to co‐catalyst molar ratio.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off