Automated modeling of nickel‐based superalloys

Automated modeling of nickel‐based superalloys Throughout the last 60 years, nickel (Ni) based superalloys have been the standard high‐temperature material used in mobile and stationary gas turbines. The ever increasing temperatures necessitate further improvements of those alloys, foremost, enhancing their creep‐resistance. Creep denotes a macroscopic, permanent change of shape which, amongst other effects, stems from thermally and mechanically induced dislocation movement. The key microstructural feature of most modern alloys is a uniform distribution of particles of the L12‐ordered γ′ phase which are embedded into the nickel‐based matrix. Most importantly, these particles are impenetrable to matrix‐dislocations. This leads to numerous dislocation effects encountered in such microstructured alloys. A wealth of different material modeling‐approaches exists in the literature which try to capture creep behavior. Due to the multiscaled nature of the physical problem, most crystal plasticity approaches are phenomenological and, thus, rely on many parameters. Finding suitable constitutive equations that capture experimental results becomes a challenge. A large deformation crystal plasticity framework has been set up which allows for an efficient comparison of different material formulations. This has been achieved by the use of AceGEN. The analytically generated tangent‐subroutine is linked into a FEAP polycrystal plasticity model and thus, global quadratic convergence is reached. In future work, a variety of flow rules, dislocation density based (cross‐) hardening formulae and parameters can be studied in a unified way [6]. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Automated modeling of nickel‐based superalloys

Loading next page...
 
/lp/wiley/automated-modeling-of-nickel-based-superalloys-crsOAzRaW6
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710187
Publisher site
See Article on Publisher Site

Abstract

Throughout the last 60 years, nickel (Ni) based superalloys have been the standard high‐temperature material used in mobile and stationary gas turbines. The ever increasing temperatures necessitate further improvements of those alloys, foremost, enhancing their creep‐resistance. Creep denotes a macroscopic, permanent change of shape which, amongst other effects, stems from thermally and mechanically induced dislocation movement. The key microstructural feature of most modern alloys is a uniform distribution of particles of the L12‐ordered γ′ phase which are embedded into the nickel‐based matrix. Most importantly, these particles are impenetrable to matrix‐dislocations. This leads to numerous dislocation effects encountered in such microstructured alloys. A wealth of different material modeling‐approaches exists in the literature which try to capture creep behavior. Due to the multiscaled nature of the physical problem, most crystal plasticity approaches are phenomenological and, thus, rely on many parameters. Finding suitable constitutive equations that capture experimental results becomes a challenge. A large deformation crystal plasticity framework has been set up which allows for an efficient comparison of different material formulations. This has been achieved by the use of AceGEN. The analytically generated tangent‐subroutine is linked into a FEAP polycrystal plasticity model and thus, global quadratic convergence is reached. In future work, a variety of flow rules, dislocation density based (cross‐) hardening formulae and parameters can be studied in a unified way [6]. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial