Attempts to control tuberculosis in cattle by removing infected badgers: constraints imposed by live test sensitivity

Attempts to control tuberculosis in cattle by removing infected badgers: constraints imposed by... Summary 1. Bovine tuberculosis is a serious disease of cattle caused by the bacillus Mycobacterium bovis. In south‐west England, badgers Meles meles sustain endemic M. bovis infection and almost certainly transmit the disease to cattle. When tuberculosis outbreaks have occurred in cattle, the Ministry of Agriculture, Fisheries and Food (MAFF) therefore culled badgers to try to avert further outbreaks. 2. To limit the number of badgers killed, MAFF has assessed a possible new strategy (the ‘live test strategy’) that used a serological test to identify and remove infected badgers. However, because the test correctly identified only 41% of truly infected badgers, individuals were pooled according to the setts at which they were sampled. All badgers were culled at setts where one or more seropositive animals were caught. 3. On average, 1·9 ± 1·4 (SD) badgers were sampled at each sett. Using a simple model, we show that this level of sampling still gives a low (24–37%) probability of detecting infection at a given sett. 4. Badger social groups typically occupy more than one sett. We allocated setts to social groups by using Dirichlet tessellations and field signs to predict territory borders. On average, 3·3 ± 2·8 badgers were sampled in each group. Our model shows that this increase in sample size gives probabilities of detecting M. bovis in truly infected groups of 43–62%, which is still likely to be unacceptably low. 5. Culling badgers according to the setts where they were trapped led to incomplete removal of social groups; some seronegative badgers were released in 61% of groups containing seropositive animals. As infection is clustered within groups, it is likely that some infected animals were released even though they tested seronegative. Incomplete removal might also cause social disruption that could accelerate the transmission of M. bovis between social groups. 6. We conclude that the live test strategy, as implemented, would be unlikely to reduce the overall prevalence of M. bovis infection in badgers, and thus the risk to cattle. Furthermore, the poor sensitivity of the serological test makes it unlikely that modifications to the live test protocol could increase its cost‐effectiveness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Attempts to control tuberculosis in cattle by removing infected badgers: constraints imposed by live test sensitivity

Loading next page...
 
/lp/wiley/attempts-to-control-tuberculosis-in-cattle-by-removing-infected-IN1xvlEp7T
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
D.O.I.
10.1046/j.1365-2664.1999.00418.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1. Bovine tuberculosis is a serious disease of cattle caused by the bacillus Mycobacterium bovis. In south‐west England, badgers Meles meles sustain endemic M. bovis infection and almost certainly transmit the disease to cattle. When tuberculosis outbreaks have occurred in cattle, the Ministry of Agriculture, Fisheries and Food (MAFF) therefore culled badgers to try to avert further outbreaks. 2. To limit the number of badgers killed, MAFF has assessed a possible new strategy (the ‘live test strategy’) that used a serological test to identify and remove infected badgers. However, because the test correctly identified only 41% of truly infected badgers, individuals were pooled according to the setts at which they were sampled. All badgers were culled at setts where one or more seropositive animals were caught. 3. On average, 1·9 ± 1·4 (SD) badgers were sampled at each sett. Using a simple model, we show that this level of sampling still gives a low (24–37%) probability of detecting infection at a given sett. 4. Badger social groups typically occupy more than one sett. We allocated setts to social groups by using Dirichlet tessellations and field signs to predict territory borders. On average, 3·3 ± 2·8 badgers were sampled in each group. Our model shows that this increase in sample size gives probabilities of detecting M. bovis in truly infected groups of 43–62%, which is still likely to be unacceptably low. 5. Culling badgers according to the setts where they were trapped led to incomplete removal of social groups; some seronegative badgers were released in 61% of groups containing seropositive animals. As infection is clustered within groups, it is likely that some infected animals were released even though they tested seronegative. Incomplete removal might also cause social disruption that could accelerate the transmission of M. bovis between social groups. 6. We conclude that the live test strategy, as implemented, would be unlikely to reduce the overall prevalence of M. bovis infection in badgers, and thus the risk to cattle. Furthermore, the poor sensitivity of the serological test makes it unlikely that modifications to the live test protocol could increase its cost‐effectiveness.

Journal

Journal of Applied EcologyWiley

Published: Sep 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off