Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Minion, R. Speck, M. Bolten, M. Emmett, D. Ruprecht (2014)
Interweaving PFASST and Parallel MultigridArXiv, abs/1407.6486
A. Veldman, E. Coenen (2005)
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING
V. Bogaevski, A. Povzner (1991)
Matrix Perturbation Theory
Katja Bachmeier (2017)
Finite Elements Theory Fast Solvers And Applications In Solid Mechanics
M. Gander (2008)
Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics, 42
J. Sokołowski, J. Zolésio (1992)
Springer series in Computational Mathematics
R. Speck, D. Ruprecht, M. Emmett, M. Bolten, R. Krause (2013)
A space-time parallel solver for the three-dimensional heat equation
R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, P. Gibbon (2014)
Integrating an N-Body Problem with SDC and PFASST
Copyright c (cid:13) 0000
S. Friedhoff, S. MacLachlan (2015)
A generalized predictive analysis tool for multigrid methodsNumerical Linear Algebra with Applications, 22
J. Wan (2007)
Practical Fourier analysis for multigrid methodsMath. Comput., 76
J‐L Lions, Y Maday, G Turinici (2001)
Résolution d'EDP par un schéma en temps «pararéel» (A “parareal” in time discretization of PDE's), 332
M. Emmett, M. Minion (2014)
Efficient Implementation of a Multi-Level Parallel in Time Algorithm
M. Weiser (2015)
Faster SDC convergence on non-equidistant grids by DIRK sweepsBIT Numerical Mathematics, 55
A. Dutt, L. Greengard, V. Rokhlin (2000)
Spectral Deferred Correction Methods for Ordinary Differential EquationsBIT Numerical Mathematics, 40
M. Bolten, H. Rittich (2018)
Fourier Analysis of Periodic Stencils in Multigrid MethodsSIAM J. Sci. Comput., 40
(2001)
A "parareal" in time discretization of PDE's. Comptes Rendus de l
J. Wilkinson (1966)
The algebraic eigenvalue problem
(2001)
Schller A. Multigrid
D. Ruprecht, R. Speck (2016)
Spectral deferred corrections with fast-wave slow-wave splittingArXiv, abs/1602.01626
M. Gander (2015)
50 Years of Time Parallel Time Integration
A. Reusken (1991)
A new lemma in multigrid convergence theory, 9107
reports on applied and numerical analysis; vol
M. Minion (2010)
A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD, 5
R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, P. Gibbon (2012)
A massively space-time parallel N-body solver2012 International Conference for High Performance Computing, Networking, Storage and Analysis
Parallel-in-time/pysdc: Asymptotic convergence
W. Hackbusch (1985)
Multi-grid methods and applications, 4
M. Bolten, Dieter Moser, R. Speck (2016)
A multigrid perspective on the parallel full approximation scheme in space and timeNumerical Linear Algebra with Applications, 24
M. Gander, S. Vandewalle (2007)
Analysis of the Parareal Time-Parallel Time-Integration MethodSIAM J. Sci. Comput., 29
K. Stüben, U. Trottenberg (1982)
Multigrid methods: Fundamental algorithms, model problem analysis and applications
E. Hairer, G. Wanner (2010)
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
A. Brandt (1977)
Multi-level adaptive solutions to boundary-value problems math comptr
M. Gander, S. Vandewalle (2007)
On the Superlinear and Linear Convergence of the Parareal Algorithm
Gunnar Staff, Einar Rønquist (2005)
Stability of the Parareal Algorithm
MJ Gander (2015)
Multiple Shooting and Time Domain Decomposition Methods: MuS‐TDD, Heidelberg. May 6‐8, 2013
R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, R. Krause (2013)
A multi-level spectral deferred correction methodBIT Numerical Mathematics, 55
M. Emmett, M. Minion (2012)
TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS, 7
(2014)
A space-time parallel solver for the threedimensional heat equation. Parallel Computing: Accelerating Computational Science and Engineering (CSE)
M. Gander (2014)
Years of Time Parallel Time Integration
Jingfang Huang, J. Jia, M. Minion (2006)
Accelerating the convergence of spectral deferred correction methodsJ. Comput. Phys., 214
J. Lions, Y. Maday, Gabriel Turinici (2001)
Résolution d'EDP par un schéma en temps « pararéel »Comptes Rendus De L Academie Des Sciences Serie I-mathematique, 332
M. Gander, E. Hairer (2008)
Nonlinear Convergence Analysis for the Parareal Algorithm
For time‐dependent partial differential equations, parallel‐in‐time integration using the “parallel full approximation scheme in space and time” (PFASST) is a promising way to accelerate existing space‐parallel approaches beyond their scaling limits. Inspired by the classical Parareal method and multigrid ideas, PFASST allows to integrate multiple time steps simultaneously using a space–time hierarchy of spectral deferred correction sweeps. While many use cases and benchmarks exist, a solid and reliable mathematical foundation is still missing. Very recently, however, PFASST for linear problems has been identified as a multigrid method. In this paper, we will use this multigrid formulation and, in particular, PFASST's iteration matrix to show that, in the nonstiff and stiff limit, PFASST indeed is a convergent iterative method. We will provide upper bounds for the spectral radius of the iteration matrix and investigate how PFASST performs for increasing numbers of parallel time steps. Finally, we will demonstrate that the results obtained here indeed relate to actual PFASST runs.
Numerical Linear Algebra With Applications – Wiley
Published: Dec 1, 2018
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.