Artificial daily fluctuations of river discharge affect the larval drift and survival of a tropical amphidromous goby

Artificial daily fluctuations of river discharge affect the larval drift and survival of a... Amphidromous fish species reproduce in rivers, and their larvae immediately drift to the sea after hatching. Most of these larvae survive in freshwater for a few days only, rapidly reaching sea water is thus essential. Being of small size, especially among species of the Sicydiinae subfamily, the larvae possess poor swimming abilities; their drift dynamics is considered to be mainly passive and influenced by flow conditions. The influence of daily fluctuations in flow regime on Sicyopterus lagocephalus (Sicydiinae) larval drift patterns was studied using drift nets at three sites along the dammed Langevin River in Reunion Island. The river flow was stable at the upstream site when frequent anthropogenic river flow fluctuations were observed at the two sites downstream to the dam. Weak diel larval drift dynamics were detected at the upstream site and the first site under anthropogenic river flow conditions. In contrast, larval drift dynamics at the most downstream site was strongly influenced by anthropogenic daily fluctuations of discharge: the abundance of drifting larvae increased with peaks of discharge, regardless of the time. As higher mortality rates of drifting larvae were observed during discharge peaks, the benefit of a more rapid travel to the ocean associated with these peaks should be lower than expected. It is concluded that peaks of discharge increase the number of larvae drifting to the sea probably due to higher physical constraints on the egg clutches, but also decrease the chance of survival for larvae that may be nonfully developed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology of Freshwater Fish Wiley

Artificial daily fluctuations of river discharge affect the larval drift and survival of a tropical amphidromous goby

Loading next page...
 
/lp/wiley/artificial-daily-fluctuations-of-river-discharge-affect-the-larval-eBSj70i3e6
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
ISSN
0906-6691
eISSN
1600-0633
D.O.I.
10.1111/eff.12381
Publisher site
See Article on Publisher Site

Abstract

Amphidromous fish species reproduce in rivers, and their larvae immediately drift to the sea after hatching. Most of these larvae survive in freshwater for a few days only, rapidly reaching sea water is thus essential. Being of small size, especially among species of the Sicydiinae subfamily, the larvae possess poor swimming abilities; their drift dynamics is considered to be mainly passive and influenced by flow conditions. The influence of daily fluctuations in flow regime on Sicyopterus lagocephalus (Sicydiinae) larval drift patterns was studied using drift nets at three sites along the dammed Langevin River in Reunion Island. The river flow was stable at the upstream site when frequent anthropogenic river flow fluctuations were observed at the two sites downstream to the dam. Weak diel larval drift dynamics were detected at the upstream site and the first site under anthropogenic river flow conditions. In contrast, larval drift dynamics at the most downstream site was strongly influenced by anthropogenic daily fluctuations of discharge: the abundance of drifting larvae increased with peaks of discharge, regardless of the time. As higher mortality rates of drifting larvae were observed during discharge peaks, the benefit of a more rapid travel to the ocean associated with these peaks should be lower than expected. It is concluded that peaks of discharge increase the number of larvae drifting to the sea probably due to higher physical constraints on the egg clutches, but also decrease the chance of survival for larvae that may be nonfully developed.

Journal

Ecology of Freshwater FishWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off