Application and developing of iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) as an efficient and reusable heterogeneous nanocatalyst in the synthesis of heterocyclic compounds

Application and developing of iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) as an... Iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) is an efficient, ecofriendly and reusable heterogeneous nanocatalyst for the one‐pot synthesis of heterocyclic compounds including bis‐spiro piperidines, piperidines, dihydro‐2‐oxopyrroles, pyrazoles and diazepines at room temperature with good to excellent yields. The heterogeneous nanocatalyst was fully characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), inductively coupled plasma (ICP) and FT‐IR analysis. Also, the structures of all prepared compounds were characterized by 1H NMR, 13C NMR, FT‐IR, mass spectrometry (MS) and elemental analysis. The major advantages of these protocols are mild and green reaction conditions, short reaction times, clean reaction, operational simplicity, easy purification and good to excellent yields with the reusable heterogeneous nanocatalyst. The catalyst was ten recycled without significant loss of activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Application and developing of iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) as an efficient and reusable heterogeneous nanocatalyst in the synthesis of heterocyclic compounds

Loading next page...
 
/lp/wiley/application-and-developing-of-iron-doped-multi-walled-carbon-nanotubes-BzL48kT0HI
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4124
Publisher site
See Article on Publisher Site

Abstract

Iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) is an efficient, ecofriendly and reusable heterogeneous nanocatalyst for the one‐pot synthesis of heterocyclic compounds including bis‐spiro piperidines, piperidines, dihydro‐2‐oxopyrroles, pyrazoles and diazepines at room temperature with good to excellent yields. The heterogeneous nanocatalyst was fully characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), inductively coupled plasma (ICP) and FT‐IR analysis. Also, the structures of all prepared compounds were characterized by 1H NMR, 13C NMR, FT‐IR, mass spectrometry (MS) and elemental analysis. The major advantages of these protocols are mild and green reaction conditions, short reaction times, clean reaction, operational simplicity, easy purification and good to excellent yields with the reusable heterogeneous nanocatalyst. The catalyst was ten recycled without significant loss of activity.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off