Anion‐π Catalysis: Focus on Nonadjacent Stereocenters

Anion‐π Catalysis: Focus on Nonadjacent Stereocenters Anion‐π interactions have been recently introduced to catalysis with the idea to stabilize anionic intermediates on π‐acidic surfaces. Realized examples include enolate, enamine and iminium chemistry, domino processes and Diels–Alder reactions. Moving on from the formation of contiguous stereogenic centers on π‐acidic surfaces, herein we report the first asymmetric anion‐π catalysis of cascade reactions that afford nonadjacent stereocenters. Conjugate addition‐protonation of achiral disubstituted enolate donors to 2‐chloroacrylonitrile generates 1,3‐nonadjacent stereocenters with moderate enantioselectivity and diastereoselectivity. The explored catalysts operate with complementary naphthalenediimide and fullerene surfaces with highly positive quadrupole moments and high polarizability, respectively, and proximal amine bases. We find that anion‐π catalysts can increase the diastereoselectivity of the reaction beyond the maximal 1:4.0 dr with conventional catalysts to maximal 5.3:1 dr on the large fullerene surfaces. The enantioselectivity of anion‐π catalysts, best on the confined naphthalenediimide surfaces with strong quadrupole moment, exceed the performance of conventional catalysts except for comparable results with a new, most compact, surprisingly powerful bifunctional control catalyst. Simultaneously increased rates and stereoselectivities compared to control catalysts without π‐acidic surface support that contributions of anion‐π interactions to the catalytic cascade process are significant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Helvetica Chimica Acta Wiley

Anion‐π Catalysis: Focus on Nonadjacent Stereocenters

Loading next page...
 
/lp/wiley/anion-catalysis-focus-on-nonadjacent-stereocenters-NptVD19nKC
Publisher
Wiley
Copyright
© 2018 Wiley‐VHCA AG, Zurich, Switzerland
ISSN
0018-019X
eISSN
1522-2675
D.O.I.
10.1002/hlca.201700288
Publisher site
See Article on Publisher Site

Abstract

Anion‐π interactions have been recently introduced to catalysis with the idea to stabilize anionic intermediates on π‐acidic surfaces. Realized examples include enolate, enamine and iminium chemistry, domino processes and Diels–Alder reactions. Moving on from the formation of contiguous stereogenic centers on π‐acidic surfaces, herein we report the first asymmetric anion‐π catalysis of cascade reactions that afford nonadjacent stereocenters. Conjugate addition‐protonation of achiral disubstituted enolate donors to 2‐chloroacrylonitrile generates 1,3‐nonadjacent stereocenters with moderate enantioselectivity and diastereoselectivity. The explored catalysts operate with complementary naphthalenediimide and fullerene surfaces with highly positive quadrupole moments and high polarizability, respectively, and proximal amine bases. We find that anion‐π catalysts can increase the diastereoselectivity of the reaction beyond the maximal 1:4.0 dr with conventional catalysts to maximal 5.3:1 dr on the large fullerene surfaces. The enantioselectivity of anion‐π catalysts, best on the confined naphthalenediimide surfaces with strong quadrupole moment, exceed the performance of conventional catalysts except for comparable results with a new, most compact, surprisingly powerful bifunctional control catalyst. Simultaneously increased rates and stereoselectivities compared to control catalysts without π‐acidic surface support that contributions of anion‐π interactions to the catalytic cascade process are significant.

Journal

Helvetica Chimica ActaWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off