Anatomical network analysis of the musculoskeletal system reveals integration loss and parcellation boost during the fins‐to‐limbs transition

Anatomical network analysis of the musculoskeletal system reveals integration loss and... Tetrapods evolved from within the lobe‐finned fishes around 370 Ma. The evolution of limbs from lobe‐fins entailed a major reorganization of the skeletal and muscular anatomy of appendages in early tetrapods. Concurrently, a degree of similarity between pectoral and pelvic appendages also evolved. Here, we compared the anatomy of appendages in extant lobe‐finned fishes (Latimeria and Neoceratodus) and anatomically plesiomorphic amphibians (Ambystoma, Salamandra) and amniotes (Sphenodon) to trace and reconstruct the musculoskeletal changes that took place during the fins‐to‐limbs transition. We quantified the anatomy of appendages using network analysis. First, we built network models—in which nodes represent bones and muscles, and links represent their anatomical connections—and then we measured network parameters related to their anatomical integration, heterogeneity, and modularity. Our results reveal an evolutionary transition toward less integrated, more modular appendages. We interpret this transition as a diversification of muscle functions in tetrapods compared to lobe‐finned fishes. Limbs and lobe‐fins show also a greater similarity between their pectoral and pelvic appendages than ray‐fins do. These findings on extant species provide a basis for future quantitative and comprehensive reconstructions of the anatomy of limbs in early tetrapod fossils, and a way to better understand the fins‐to‐limbs transition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolution Wiley

Anatomical network analysis of the musculoskeletal system reveals integration loss and parcellation boost during the fins‐to‐limbs transition

Loading next page...
 
/lp/wiley/anatomical-network-analysis-of-the-musculoskeletal-system-reveals-qFipUHCx7B
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018, Society for the Study of Evolution
ISSN
0014-3820
eISSN
1558-5646
D.O.I.
10.1111/evo.13430
Publisher site
See Article on Publisher Site

Abstract

Tetrapods evolved from within the lobe‐finned fishes around 370 Ma. The evolution of limbs from lobe‐fins entailed a major reorganization of the skeletal and muscular anatomy of appendages in early tetrapods. Concurrently, a degree of similarity between pectoral and pelvic appendages also evolved. Here, we compared the anatomy of appendages in extant lobe‐finned fishes (Latimeria and Neoceratodus) and anatomically plesiomorphic amphibians (Ambystoma, Salamandra) and amniotes (Sphenodon) to trace and reconstruct the musculoskeletal changes that took place during the fins‐to‐limbs transition. We quantified the anatomy of appendages using network analysis. First, we built network models—in which nodes represent bones and muscles, and links represent their anatomical connections—and then we measured network parameters related to their anatomical integration, heterogeneity, and modularity. Our results reveal an evolutionary transition toward less integrated, more modular appendages. We interpret this transition as a diversification of muscle functions in tetrapods compared to lobe‐finned fishes. Limbs and lobe‐fins show also a greater similarity between their pectoral and pelvic appendages than ray‐fins do. These findings on extant species provide a basis for future quantitative and comprehensive reconstructions of the anatomy of limbs in early tetrapod fossils, and a way to better understand the fins‐to‐limbs transition.

Journal

EvolutionWiley

Published: Jan 1, 2018

Keywords: ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off